В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Настюнькаz
Настюнькаz
13.08.2020 09:44 •  Алгебра

11 класс. , . найти точку минимума функции: y=(17-6•x^1/2)•e^1-x в ответе 9

Показать ответ
Ответ:
ruba35
ruba35
03.08.2020 20:23
y=(17-6x^{1/2})e^{1-x} \\ y'=(0-3x^{-1/2})e^{1-x}+(17-6x^{1/2})e^{1-x}(-1)= \\ =(-3x^{-1/2} - 17 + 6x^{1/2})e^{1-x}
Найдем точки экстремума
(-3x^{-1/2} - 17 + 6x^{1/2})e^{1-x}=0 \\ -\frac {3}{x^{1/2}} - 17 + 6x^{1/2}=0
Обозначим y= x^{1/2} y>0
-\frac {3}{y} - 17 + 6y=0
-3 - 17y + 6y² =0
D=17²+4*6*3=289+72=361
√D=19
у₁=(17-19)/12=-1/6 отбрасываем, так как у дожен быть положительным
у₂=(17+19)/12=3
х=9
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота