Допустим,нам даны прямые a и b ,пересекающиеся в некоторой точке,и окружность с центром в точке О,заключённая между ними. Основываясь на том теореме,что каждая точка биссектрисы неразвёрнутого угла равноудалена от его сторон. Строим биссектрису угла ,образованного прямыми a и b (план построения биссектрисы с циркуля и линейки оставлю в одном из вложений). Возможен случай,когда биссектриса не пересекает данную окружность,тогда равноудалённых от прямых точек ,лежащих на окружности,нет.(третий чертёж на первой фотографии) Возможен случай,когда биссектриса касается окружности; в данном случае окружность имеет ОДНУ равноудалённую от прямых точку,поскольку она лежит на биссектрисе угла образованного прямыми.(второй чертёж на первой фотографии; искомая точка жирно выделена) Возможен случай,когда биссектриса пересекает окружность; в данном случае окружность будет иметь ДВЕ равноудалённые от прямых точки,поскольку они они лежат на биссектрисе угла,образованного прямыми.(первый чертёж на первой фотографии; точки также жирно выделены)
Основываясь на том теореме,что каждая точка биссектрисы неразвёрнутого угла равноудалена от его сторон.
Строим биссектрису угла ,образованного прямыми a и b (план построения биссектрисы с циркуля и линейки оставлю в одном из вложений).
Возможен случай,когда биссектриса не пересекает данную окружность,тогда равноудалённых от прямых точек ,лежащих на окружности,нет.(третий чертёж на первой фотографии)
Возможен случай,когда биссектриса касается окружности; в данном случае окружность имеет ОДНУ равноудалённую от прямых точку,поскольку она лежит на биссектрисе угла образованного прямыми.(второй чертёж на первой фотографии; искомая точка жирно выделена)
Возможен случай,когда биссектриса пересекает окружность; в данном случае окружность будет иметь ДВЕ равноудалённые от прямых точки,поскольку они они лежат на биссектрисе угла,образованного прямыми.(первый чертёж на первой фотографии; точки также жирно выделены)
Найти нужно самый маленький положительный корень
1-sin2x=(cos2x+sin2x)^2
(cos2x+sin2x)^2 =cos²2x+sin²2x+2cos2x·sin2x=1+2cos2x·sin2x
1-sin2x=1+2cos2x·sin2x
2cos2x·sin2x+sin2x=0 (2cos2x+1)sin2x=0 ⇔
1) sin2x=0 2x=πn, n∉Z
x=πn/2, n∉Z
2) (2cos2x+1)=0 ⇔ cos2x=1/2
2.1) 2x= -π/3+2πn, n∈Z
x= -π/6+πn, n∈Z.
2.2) x= π/6+πn, n∈Z.
меньший положительный корень x=π/6, (30°).