Решение системы уравнений (21/32 (≈0,66); 7/8 (≈0,88)
Объяснение:
Решить систему уравнений:
5y+4x=7
4x−3y=0 методом сложения.
Смысл метода алгебраического сложения в том, чтобы при сложении уравнений одно неизвестное взаимно уничтожилось. То есть, чтобы коэффициенты при неизвестном каком-то были одинаковыми, но с противоположными знаками. Для того, чтобы этого добиться, преобразовывают уравнения, можно умножать обе части уравнения на одно и то же число, делить.
В данной системе нужно любое из уравнений умножить на -1:
-4х-5у= -7
4x−3y=0
Складываем уравнения:
-4х+4х-5у-3у= -7
-8у= -7
у= -7/-8
у=7/8
Теперь подставляем значение у в любое из двух уравнений системы и вычисляем х:
1)Неравенство:
-0,3*x-3>0
-0,1*х+5>0
x<-10
x<50
Находим пересечение -> х от бесконечности до -10
2)не имеет решений при x<=0
A x<0 не имеет решений при х>=a
3) Примем стороны за a,b,c
а = 16 м
b = 12 м
Р = а + b + c > 48
Подставим значения в уравнение периметра:
16 + 12 + c > 48
28 + c > 48
c> 48 - 28
c > 20 (м)
Треугольник существует тогда и только тогда, когда сумма двух любых его сторон больше третьей стороны . Следовательно:
16 + 12 > c
28 > c
c < 28 (м)
Вывод :
20 м < с < 28 м ⇒ c ∈ (20 м ; 28 м)
Решение системы уравнений (21/32 (≈0,66); 7/8 (≈0,88)
Объяснение:
Решить систему уравнений:
5y+4x=7
4x−3y=0 методом сложения.
Смысл метода алгебраического сложения в том, чтобы при сложении уравнений одно неизвестное взаимно уничтожилось. То есть, чтобы коэффициенты при неизвестном каком-то были одинаковыми, но с противоположными знаками. Для того, чтобы этого добиться, преобразовывают уравнения, можно умножать обе части уравнения на одно и то же число, делить.
В данной системе нужно любое из уравнений умножить на -1:
-4х-5у= -7
4x−3y=0
Складываем уравнения:
-4х+4х-5у-3у= -7
-8у= -7
у= -7/-8
у=7/8
Теперь подставляем значение у в любое из двух уравнений системы и вычисляем х:
5y+4x=7
4х=7-5у
4х=7-5*7/8
4х=21/8
х=21/8:4
х=21/32
Решение системы уравнений (21/32; 7/8)