опишу в общем виде: составляешь таблицу со строками «туда» и «обратно». Там расстояние (S) будет одинаковое, скорость (v) «туда» обозначим за х, а скорость «обратно» за х+2. Время «t» выражаем через формулы скорости v=S/t, НО! Во времени «обратно» ещё добавляем два отдельно от дроби. Дальше составляем уравнение и домножаем каждую дробь и двойку на х(х+2), то есть приводим к общему знаменателю-единице. Раскрываем скобки, сокращаем, получившее квадратное уравнение -2х^2-4х+448=0 делим на -2 и получаем х^2+2х-224=0. Через дискриминант (равный 900) решаем уравнение, получаем корни 14 и -16. -16 не подходит, потому что скорость не может быть отрицательной. Прибавляем к 14 два (по условию) и получаем 16. Вторую хз как решать
опишу в общем виде: составляешь таблицу со строками «туда» и «обратно». Там расстояние (S) будет одинаковое, скорость (v) «туда» обозначим за х, а скорость «обратно» за х+2. Время «t» выражаем через формулы скорости v=S/t, НО! Во времени «обратно» ещё добавляем два отдельно от дроби. Дальше составляем уравнение и домножаем каждую дробь и двойку на х(х+2), то есть приводим к общему знаменателю-единице. Раскрываем скобки, сокращаем, получившее квадратное уравнение -2х^2-4х+448=0 делим на -2 и получаем х^2+2х-224=0. Через дискриминант (равный 900) решаем уравнение, получаем корни 14 и -16. -16 не подходит, потому что скорость не может быть отрицательной. Прибавляем к 14 два (по условию) и получаем 16. Вторую хз как решать
Это вид уравнения окружности, который можно использовать для определения центра и радиуса окружности.
(
x
−
h
)
2
+
(
y
−
k
)
2
=
r
2
Сопоставьте параметры окружности со значениями в ее каноническом виде. Переменная
r
представляет радиус окружности,
h
представляет сдвиг по оси X от начала координат, а
k
представляет сдвиг по оси Y от начала координат.
r
=
2
h
=
5
k
=
−
1
Центр окружности находится в точке
(
h
,
k
)
.
Центр:
(
5
,
−
1
)
Эти величины представляют важные значения для построения графика и анализа окружности.
Центр:
(
5
,
−
1
)
Радиус:
2