Формула сокращенного умножения (а+в)^2 выражение в квадрате, т.е. умножить само на себя два раза (а+в)^2=(а+b)*(a+b) умножить многочлен на многочлен, т.е. каждое слагаемое первого множителя умножаем на каждое слагаемое второго (а+в)^2=(а+b)*(a+b)=а*(a+b)+b*(a+b)= умножение одночлена на многочлен по распределительному закону (а+в)^2=(а+b)*(a+b)=а*(a+b)+b*(a+b)=a*a+a*b+a*b+b^2 приводим подобные слагаемые (а+в)^2=(а+b)*(a+b)=а*(a+b)+b*(a+b)=a*a+ a*b+a*b+b^2=a^2+2ab+b^2 (а+в)^2=a^2+2ab+b^2 -формула сокращенного умножения, запоминаем первое и последнее, пропуская выкладки
ответ:
а) корни: y1=(5, 0) у2=(-10, 0)
б) х=9/2 или 4 1/2 или 4,5; корни: y1=(-6, 0) у2=(15, 0)
объяснение
а) y1=(x-5)^2 область определения x ∈ r
минимум (5, 0)
пересечение с осью координат (0, 25)
y2=(x+10)^5 область определения x ∈ r
пересечение с осью координат (0, 100000)
б) (x+6)^2=(15-x)^2
√(x+6)^2=√(15-x)^2
|x+6| = |15-x|
x+6 = 15-x x+6 = -(15-x)
x+x+6 = 15 x+6 = -15+x → сокращаем иксы
x+x = 15-6 6 = -15
2x = 9 x ∈ ∅
х=9/2
y1=(x+6)^2 область определения x ∈ r
минимум (-6, 0)
пересечение с осью координат (0, 36)
y2=(15-х)^2 область определения x ∈ r
минимум (15, 0)
пересечение с осью координат (0, 225)