Угловой коэффициент прямой у=2х-2 равен k=2 . Если касательная параллельна этой прямой или совпадает с ней , то их угловые коэффициенты равны.
Угловой коэффициент касательной к графику функции y=f(x) равен значению производной в точке касания, то есть .
На оси ординат находим значение у=2, проводим прямую, параллельную оси ОХ, и находим на графике функции точку М - точку пересечения графика с прямой у=2.
Далее Находим абсциссу точки М . Это и будет абсцисса точки, в которой касательная к графику функции y=f(x) параллельна прямой y=2x-2 или совпадает с ней.
Признак сходимости знакочередующихся рядов (признак Лейбница):
Пусть имеется ряд
Тогда, если выполнены условия:
Ряд является знакочередующимся. Члены ряда убывают по модулюто ряд сходится.
1) Чередование знаков
Ряд является знакочередующимся, т.к. присутствует множитель
2) Убывание по модулю
Неопределенность вида "бесконечность делить на бесконечность" решим по правилу Лопиталя
Таким образом, ряд сходится
Тип сходимостиСходящийся ряд называют абсолютно сходящимся, если сходится ряд .
Сходимость такого ряда можно определить с предельного признака Даламбера
Неопределенность вида "бесконечность делить на бесконечность" решим по правилу Лопиталя
Ряд сходится по признаку Вейерштрасса, следовательно исходный ряд сходится абсолютно.
ответ: .
Угловой коэффициент прямой у=2х-2 равен k=2 . Если касательная параллельна этой прямой или совпадает с ней , то их угловые коэффициенты равны.
Угловой коэффициент касательной к графику функции y=f(x) равен значению производной в точке касания, то есть .
На оси ординат находим значение у=2, проводим прямую, параллельную оси ОХ, и находим на графике функции точку М - точку пересечения графика с прямой у=2.
Далее Находим абсциссу точки М . Это и будет абсцисса точки, в которой касательная к графику функции y=f(x) параллельна прямой y=2x-2 или совпадает с ней.
Координаты точки М(5;2) , значит .