12 друзів домовилися щороку після закінчення школи зустрічатися в кафе. вони вважали що обмінюватися новинами зручніше за столиком по 4 скільки років потрібно щоб кожний міг посидіти з кожним за одним столиком?
Y(x)=x²+4, х₀=1, k=4 угловой коэффициент касательной к функции равен значению производной функции в точке касания, т.е. k=y'(x₀) 1) найдем производную: y'(x)=(x²+4)'=2x k=y'(x₀)=y'(1)=2*1=2 - угловой коэффициент касательной к графику функции в точке с абсциссой x₀=1 2) теперь известен угловой коэффициент k=4, но неизвестна точка касания x₀, т.е. y'(x₀)=k 2*x₀=4 x₀=2 чтобы найти ординату точки, подставим x₀ в функцию y(x): y₀=y(x₀)=2²+4=4+4=8 (2;4) - координаты точки, в которой угловой коэффициент касания равен k=4 3) уравнение касательной в общем виде: f(x)=y(x₀)+y'(x₀)*(x-x₀) x₀=1, y'(x₀)=2 - найдено выше под 1) y(x₀)=1²+4=5 подставляем найденные значения в общий вид: f(x)=5+2(x-1)=5+2x-2=2x+3 - уравнение касательной к графику функции в точке с абсциссой x₀=1
а) разность чисел 8,5 и 7,3;
б) произведение чисел 4,7 и 12,3;
в) частное чисел 65 и 1,3;
г) сумма чисел 5,6 и 0,9;
д) сумма произведения чисел 2 и 9,5 и числа 14;
е) частное разности чисел 10 и 2,7 и числа 5;
ж) произведение числа 6,1 и частного чисел 8,4 и 4;
з) частное суммы чисел 6,4 и 7 и числа 2;
и) разность числа 2,5 и суммы чисел 3,2 и 1,8;
к) произведение разности чисел 5,74 и 1,24 и числа 3,6;
л) разность числа 8 и суммы чисел 1,71 и 0,19;
м) разность частного чисел 0,36 и 0,3 и числа 1,78
угловой коэффициент касательной к функции равен значению производной функции в точке касания, т.е. k=y'(x₀)
1) найдем производную:
y'(x)=(x²+4)'=2x
k=y'(x₀)=y'(1)=2*1=2 - угловой коэффициент касательной к графику функции в точке с абсциссой x₀=1
2) теперь известен угловой коэффициент k=4, но неизвестна точка касания x₀, т.е.
y'(x₀)=k
2*x₀=4
x₀=2
чтобы найти ординату точки, подставим x₀ в функцию y(x):
y₀=y(x₀)=2²+4=4+4=8
(2;4) - координаты точки, в которой угловой коэффициент касания равен k=4
3) уравнение касательной в общем виде: f(x)=y(x₀)+y'(x₀)*(x-x₀)
x₀=1, y'(x₀)=2 - найдено выше под 1)
y(x₀)=1²+4=5
подставляем найденные значения в общий вид:
f(x)=5+2(x-1)=5+2x-2=2x+3 - уравнение касательной к графику функции в точке с абсциссой x₀=1