12 рабочих надо разбить на 3 бригады по 4 человек. 1) сколько может быть различных составов бригад? 2) сколько из них тех, в которых рабочие а, б, в окажутся вместе? 3) сколько из них тех, в которых рабочие d, e окажутся вместе?
Легко заметить, что значения α периодичны начиная с n = 2. Период длины 4 состоит из повторяющихся значений (9,27,81,243). Периодичность α можно доказать и строго (например, методом математической индукции).
Таким образом, мы имеем всего 5 различных значений для угла поворота α: 3,9,27,81,243
Равносторонний треугольник переходит сам в себя при поворотах относительно центра на угол β = Ω + 120k, где k=1,2,3,4,... Такие повороты β неотличимы от Ω, и должны считаться одинаковыми.
Проверяем и убеждаемся, что 5 различных значений α есть два (а именно, 3 и 243 = 120*2 + 3), которые должны считаться одинаковыми. Оставим из этих двух значений одно (а именно, 3).
Итак, у нас остается всего 4 различных значений α: 3,9,27,81
Следовательно, наши 4 значения для угла поворота α переводят равносторонний треугольник в различные положения.
Составим следующую таблицу:
Степень n Угол поворота α = 3^n (mod 360)
1 3
2 9
3 27
4 81
5 243
6 9
7 27
8 81
9 243
10 9
11 27
12 81
13 243
14 9
...
Легко заметить, что значения α периодичны начиная с n = 2. Период длины 4 состоит из повторяющихся значений (9,27,81,243). Периодичность α можно доказать и строго (например, методом математической индукции).
Таким образом, мы имеем всего 5 различных значений для угла поворота α: 3,9,27,81,243
Равносторонний треугольник переходит сам в себя при поворотах относительно центра на угол β = Ω + 120k, где k=1,2,3,4,... Такие повороты β неотличимы от Ω, и должны считаться одинаковыми.
Проверяем и убеждаемся, что 5 различных значений α есть два (а именно, 3 и 243 = 120*2 + 3), которые должны считаться одинаковыми. Оставим из этих двух значений одно (а именно, 3).
Итак, у нас остается всего 4 различных значений α: 3,9,27,81
Следовательно, наши 4 значения для угла поворота α переводят равносторонний треугольник в различные положения.
ответ: (Г) 4.
Нужно найти производную сначала ее вычислить а потом подставить x
Пишите задание понятно и исчерпывающе!
f(x)=корень(x^2-2x)
f'(x)=(корень(x^2-2x))'=1/(2*корень(x^2-2x)) *(x^2-2x)'=(2x-2)/(2*корень(x^2-2x))=
=(x-1)/корень(x^2-2x)
f'(3)=(3-1)/корень(3^2-3)=2/корень(6)=2*корень(6)/6=корень(6)/6
f(x)=корень(x^2+1)
f'(x)=(корень(x^2+1))'=1/(2*корень(x^2+1))' *(x^2+1)'=2x / (2*корень(x^2+1))=
=x/корень(x^2+1)
f'(2)=2/корень(2^2+1)=2/корень(5)=2/5*корень(5)
f(x)=(x^2+1)*под корнем x^2+1=(x^2+1)^(3/2)
f'(x)=( (x^2+1)^(3/2) )'=3/2 *(x^2+1)^(3/2-1) * (x^2+1)'=3/2 *корень(x^2+1)* 2x=
=3x*корень(x^2+1)
f'(корень(3))=3*корень(3) *корень((корень(3))^2+1)=
=3*корень(3)*2=6*корень(3)