12 жеребцов, 10 котлов и 13 примитивных лошадей приняли участие в гонке
принять участие
а) Одна из лошадей, участвующих в гонке, будет перевернута
должен быть выбран для национальной игры. Выбранная лошадь является котлом
Какова вероятность?
б) отстрел одной из лошадей, участвующих в гонке
должен быть выбран для национальной игры. Выбор лошади примитивен
Какова вероятность отсутствия?
х км/ч - скорость катера по течению реки
у км/ч - скорость катера против течения реки
{3х + 4у = 174
{4х + 5у = 224
- - - - - - - - - -
Вычтем из первого уравнения системы второе
х + у = 50
х = 50 - у
Подставим значение х в любое уравнение системы
3 · (50 - у) + 4у = 174 или 4 · (50 - у) + 5у = 224
150 - 3у + 4у = 174 200 - 4у + 5у = 224
у = 174 - 150 у = 224 - 200
у = 24 у = 24
- - - - - - - - - -
х = 50 - 24
х = 26
ответ: 26 км/ч - скорость катера по течению реки; 24 км/ч - скорость катера против течения реки.
Имеем конечную арифметическую прогрессию с первым членом -111, разностью арифметической прогрессии 1 (разница между двумя последовательными целыми числами) и суммой 339, нужно найти последний член данной прогрессии
- не подходит, количество членов прогрессии не может быть отрицательным
ответ: 114
второй на смекалку)
(так как слагаемые последовательные целые числа, и меньшее из них отрицательное, а сумма положительна, то последнее из них тоже положительное, иначе они б в сумме дали отрицательное число как сумму отрицательных числе, а не положительное)
далее -111+(-110)+.+0+1+2+...+110+111+112+...+х=
(-111+111)+(-110+110)+(-99+99)+(-1+1)+0+112+113+114+.. + х=
0+0+0+....+0+0+112+113+114+..+х
=112+113+..+х
т.е каждому отрицательному найдется в "противовес" положительное, которое в сумме вместе с ним даст 0,
и фактически наша сумма равна 112+113+...+х (*)
так как наименьшее из слагаемых (*) трицифровое ,и наша сумма трицифровое число, то мы последовательно сравнивая суммы
, найдем его очень быстро
112=112
112+113=225 - меньше
112+113+114=339 -- совпало
значит искомое число х равно 114
ответ: 114