система имеет бесконечно много решений если мы имеем тождество, не зависящее от переменных:
для этого нужно, чтобы коэфф. при х, у и правая часть совпадали с точностью до множителя. сейчас поясню:
в первом уравнении при х стоит 4, во втором 20, 20 = 4*5
в правой части первого уравнения стоит 3, во втором 15, 15 = 3*5
значит -а*5=10 => а=-2
при этом а, если мы домножим первое уравнение на 5 и вычтем из 2, получим 0 = 0 - это тождество верное при любых х и у, то есть решений бесконечно много
-2
Объяснение:
система имеет бесконечно много решений если мы имеем тождество, не зависящее от переменных:
для этого нужно, чтобы коэфф. при х, у и правая часть совпадали с точностью до множителя. сейчас поясню:
в первом уравнении при х стоит 4, во втором 20, 20 = 4*5
в правой части первого уравнения стоит 3, во втором 15, 15 = 3*5
значит -а*5=10 => а=-2
при этом а, если мы домножим первое уравнение на 5 и вычтем из 2, получим 0 = 0 - это тождество верное при любых х и у, то есть решений бесконечно много
х+2х+4у-4у=7+14 -> 3x=21 -> x=7 в любое (1) 4у=7-х -> y=(7-x)/4=(7-7)/4=0
2) (первое умножу на 2)
6х+2у+х-2у=14+8 ->7x=22 -> x=22/7 в любое (1) у=7-3х=7-3*22/7=(49-66)/7=-17/7
3) (второе на 2)
2х-у-2х+4у=8+10 -> 3y=18 y=6 (во второе например) 2у-5=х х=2*6-5=12-5=7
4)Первое умножу на -1
-х-2у-3х+2у=5+5 -4х=10 х=-2,5 в первое например 2у=-1-х у=(-1-х)/2=(-1+2,5)/2=0,75
5)второе напрмер на -1
х-3у-2х+3у=6-4 -х=2 х=-2 например в первое 3у=х+6 -> y=(x+6)/3=(-2+6)/3=4/3