3/4 (Это дробь).
Объяснение:
1.1. по определению:
(2−x)−1=12−x.
1.2. Рассмотрим важное тождество, которое часто используется на практике: (ab)−1=ba.
Значит: (2−x3x)−1=3x2−x.
1.3. Упростим выражение, которое находится в знаменателе дроби:
3−(2−x3x)−1=3−3x2−x=3\2−x−3x2−x=3(2−x)−3x2−x=6−3x−3x2−x=6−6x2−x.
1.4. Получим: 3x(2−x)−13−(2−x3x)−1=3x2−x6−6x2−x=3x2−x:6−6x2−x=3x2−x⋅2−x6−6x=3x(2−x)(2−x)(6−6x)=3x6−6x.
2. Далее подставим вместо x=35:
3x6−6x=3⋅356−6⋅35=(3⋅35):(6−6⋅35)=3⋅35:6⋅5−6⋅35=95⋅512=9⋅55⋅12=34.
3/4 (Это дробь).
Объяснение:
1.1. по определению:
(2−x)−1=12−x.
1.2. Рассмотрим важное тождество, которое часто используется на практике: (ab)−1=ba.
Значит: (2−x3x)−1=3x2−x.
1.3. Упростим выражение, которое находится в знаменателе дроби:
3−(2−x3x)−1=3−3x2−x=3\2−x−3x2−x=3(2−x)−3x2−x=6−3x−3x2−x=6−6x2−x.
1.4. Получим: 3x(2−x)−13−(2−x3x)−1=3x2−x6−6x2−x=3x2−x:6−6x2−x=3x2−x⋅2−x6−6x=3x(2−x)(2−x)(6−6x)=3x6−6x.
2. Далее подставим вместо x=35:
3x6−6x=3⋅356−6⋅35=(3⋅35):(6−6⋅35)=3⋅35:6⋅5−6⋅35=95⋅512=9⋅55⋅12=34.
cos(π/2-3x)= cos (3x-π/2)
Решаем уравнение:
cos ( 3x-π/2) = √3/2
3x - π/2 = ± arccos (√3/2) + 2π·n, n∈ Z
3x - π/2 = ± (π/6) + 2π·n, n∈ Z
3x = π/2 ± (π/6) + 2π·n, n∈ Z
x = π/6 ± (π/12) + (2π/3)·n, n∈ Z
или
вычитая получим: складывая получим:
х₁= π/2 - (π/6) + (2π/3)·n, n∈ Z х₂= π/2 + (π/6) + (2π/3)·n, n∈ Z
х₁= π/3 + (2π/3)·n, n∈ Z х₂=2π/3 + (2π/3)·n, n∈ Z
при n =0 получаем корни
π/3 и 2π/3
при n = 1
(π/3) + (2π\3) = π и (2π/3) + (2π/3)= 4π/3
при n = 2
(π/3) + (2π/3)·2=(5π\3) и ( 2π/3) +(2π/3)·2=(6π\3)=2π
3π/2 <(5π/3) <2π
3π/2 < 2π≤2π
ответ. На [3π/2; 2π] два корня: (5π.3) и 2π