14.5. Найдите разность арифметической прогресен (аn), если:(2 и 4) 14.6. Найдите 20-й член и значение суммы 20 первых членов арифметической прогрессии:(2 и 4)
Р=0,85 - вероятность попадания стрелка при одном выстреле. q=1-0,85=0,15 - вероятность промаха стрелка при одном выстреле. Р и q - несовместимые события. По формуле Бернули определим Р(2)(7)=С(2)(7)*0,15^2*0,85^5=0,21 вероятность того, что при 7 выстрелах будет 2 промаха. Р(3)(7)=С(3)(7)*0,15^3*0,85^4=0,06 будет 3 промаха P(4)(7)=C(4)(7)*0,15^4*0,85^3=0,01 будет 4 промаха P(5)(7)=C(5)(7)*0,15^5*0,85^2=0,001 будет 5 промахов P(6)(7)=C(6)(7)*0,15^6*0,85=0,00007 будет 6 промахов P(7)(7)=C(7)(7)*0,15^7*0,85^0=0,0000017 будет 7 промахов Вероятность наивероятнейшего числа промахов m 7*0,15-0,85<=m<7*0,15+0,15 0,2<=m<1,2 Это значение Р(2)(7)=0,21
Очевидно, что а,b,c могут равняться числам от 0 до 9;
ОДЗ: а,b,c є [0;9]
Мы знаем, что с — среднее геометрическое а и b, следовательно c равняется корню из произведения а на b;
с=sqrt a*b
Также мы знаем, что по условию: bаc–аbc=270. Опустим в данном примере операцию с единицами (с–с=0). Тогда bа–аb=27.
Выразим одну неизвестную величину через другую: 27+аb=bа Далее начинаем методом подбора из ОДЗ находить доступные комбинации. Таковых всего пять:
а=5; b=8
а=4; b=7
а=3; b=6
а=2; b=5
а=1; b=4
Таким образом, нам доступно пять комбинаций чисел сотен и десятков.
Теперь возвратимся к условию, касающемуся числа единиц. Сказано, что оно равно корню из произведения а на b. Из всех перечисленных вариантов, корень можно извлечь только из произведения чисел в последней комбинации. с= sqrt 1*4=2 В итоге получаем: а=1; b=4; с=2 Проверим, выполняется ли начальное условие: bac–abc=270 412–142=270 — условие выполняется. ответ: Искомое число — 142.
q=1-0,85=0,15 - вероятность промаха стрелка при одном выстреле.
Р и q - несовместимые события.
По формуле Бернули определим
Р(2)(7)=С(2)(7)*0,15^2*0,85^5=0,21 вероятность того, что при 7 выстрелах будет 2 промаха.
Р(3)(7)=С(3)(7)*0,15^3*0,85^4=0,06 будет 3 промаха
P(4)(7)=C(4)(7)*0,15^4*0,85^3=0,01 будет 4 промаха
P(5)(7)=C(5)(7)*0,15^5*0,85^2=0,001 будет 5 промахов
P(6)(7)=C(6)(7)*0,15^6*0,85=0,00007 будет 6 промахов
P(7)(7)=C(7)(7)*0,15^7*0,85^0=0,0000017 будет 7 промахов
Вероятность наивероятнейшего числа промахов m
7*0,15-0,85<=m<7*0,15+0,15
0,2<=m<1,2
Это значение Р(2)(7)=0,21
Пусть искомое число — аbc.
Очевидно, что а,b,c могут равняться числам от 0 до 9;
ОДЗ: а,b,c є [0;9]
Мы знаем, что с — среднее геометрическое а и b, следовательно c равняется корню из произведения а на b;
с=sqrt a*b
Также мы знаем, что по условию: bаc–аbc=270. Опустим в данном примере операцию с единицами (с–с=0). Тогда bа–аb=27.
Выразим одну неизвестную величину через другую: 27+аb=bа
Далее начинаем методом подбора из ОДЗ находить доступные комбинации. Таковых всего пять:
а=5; b=8
а=4; b=7
а=3; b=6
а=2; b=5
а=1; b=4
Таким образом, нам доступно пять комбинаций чисел сотен и десятков.
Теперь возвратимся к условию, касающемуся числа единиц. Сказано, что оно равно корню из произведения а на b. Из всех перечисленных вариантов, корень можно извлечь только из произведения чисел в последней комбинации.
с= sqrt 1*4=2
В итоге получаем: а=1; b=4; с=2
Проверим, выполняется ли начальное условие: bac–abc=270
412–142=270 — условие выполняется.
ответ: Искомое число — 142.