{a1+ a6=11 a2+a4=10 Выразим а2, а4 , а6 через первый член арифметической прогрессии и разность прогрессии (d) a2=a1+d a4=a1+3d a6=a1+5d и подставим в систему: {a1+a1+5d=11 a1+d+a1+3d=10 {2a1+5d=11 2a1+4d=10 Решим систему методом сложения. Умножим первое уравнение на (-1) и сложим со вторым: {-2a1-5d=-11 + 2a1+4d=10 -d=-1 d=1 2a1+4=10 a1=3 (подставили найденное значение d во второе уравнение системы и нашли первый член прогрессии.) По формуле суммы n-первых членов прогрессии найдём сумму первых шести членов этой прогрессии: S6=(2·3+5 )\2·6=33 (Sn=(2a1+d(n-1))\2·n) ответ:33
число 79
Объяснение:
Пусть 10а+b искомое заданное число (a,b - цифры)
Тогда 10a+b=(a+b)*k+15, где k є Z
Если остаток 15, то делимое должно быть больше 15, т.е.
a+b>15 (a+b>=16)
Если хотя бы одна цифра меньше 7, то a+b<7+9=16, поэтому расмотрим оставшиеся варианты
a=7, b=7 7+7=14<16
a=7, b=8 7+8=15<16
a=7, b=9 9+7=16; 79:(7+9)=4 (ост. 15) подходит
a=8, b=7 8+7=15<16
a=9, b=7 9+7=16; 97:(9+7)=6(ост. 1)
a=8, b=8: 88:(8+8)=5 (ост. 8)
a=9, b=8: 98:(8+9)=5 (ост. 13)
a=9, b=9: 99:(9+9)=5 (ост. 9)
a=8, b=9: 89:(8+9)=5 (ост.4 )
Выразим а2, а4 , а6 через первый член арифметической прогрессии и разность прогрессии (d)
a2=a1+d a4=a1+3d a6=a1+5d и подставим в систему:
{a1+a1+5d=11 a1+d+a1+3d=10
{2a1+5d=11 2a1+4d=10
Решим систему методом сложения. Умножим первое уравнение на (-1) и сложим со вторым:
{-2a1-5d=-11 + 2a1+4d=10
-d=-1
d=1
2a1+4=10
a1=3 (подставили найденное значение d во второе уравнение системы и нашли первый член прогрессии.)
По формуле суммы n-первых членов прогрессии найдём сумму первых шести членов этой прогрессии:
S6=(2·3+5 )\2·6=33 (Sn=(2a1+d(n-1))\2·n)
ответ:33