Для удобства объем бассейна обозначим v м³, х-время за которое 1 кран заполнит, у-время за которое 2 кран заполнит. запуск первого крана: он работает х/3 времени, и заполнит (v/у)*(х/3) второй аналогично : (v/х)*(у/3) 1) + =13/18v + =13/18 =13/18 39ху=х²+у² 39xy=(x+y)²-2xy 41xy=(x+y)² 2) ((v/у)+(v/х))*3 часа 36 минут=v *3.6=1 (x+y)*36=10*xy 3) q=x+y w=xy получили систему q²=41*36*q/10 q=41*36/10=147,6 10w=36*q ⇒w=3,6*q=531.36 получили систему x=147,6-y (147,6-y)*y=531.36 147,6y-y²=531.46 y²-147,6*y-531.46=0
Решение: Обозначим числитель дроби за (х), а знаменатель за (у), дробь выглядит так: х/у Прибавим к числителю и знаменателю данной дроби по (1), получим уравнение: (х+1)/(у+1)=1/2 Вычтем из числителя и знаменателя дроби х/у по (1), получим уравнение: (х-1)/(у-1)=1/3 Решим получившуюся систему уравнений: (х+1)/(у+1)=1/2 (х-1)/(у-1)=1/3 (х+1)=1/2*(у+1) Приведём к общему знаменателю 2 (х-1)=1/3*(у-1) Приведём к общему знаменателю 3 2х+2=у+1 3х-3=у-1
2х-у=1-2 3х-у=-1+3
2х-у=-1 3х-у=2 Вычтем из первого уравнения второе уравнение: 2х-у-3х+у=-1-2 -х=-3 х=-3 : -1 х=3 Подставим значение х=3 в первое уравнение: 2*3 -у=-1 -у=-1-6 -у=-7 у=-7 : -1 у=7 Отсюда: х/у=3/7
Обозначим числитель дроби за (х), а знаменатель за (у), дробь выглядит так:
х/у
Прибавим к числителю и знаменателю данной дроби по (1), получим уравнение:
(х+1)/(у+1)=1/2
Вычтем из числителя и знаменателя дроби х/у по (1), получим уравнение:
(х-1)/(у-1)=1/3
Решим получившуюся систему уравнений:
(х+1)/(у+1)=1/2
(х-1)/(у-1)=1/3
(х+1)=1/2*(у+1) Приведём к общему знаменателю 2
(х-1)=1/3*(у-1) Приведём к общему знаменателю 3
2х+2=у+1
3х-3=у-1
2х-у=1-2
3х-у=-1+3
2х-у=-1
3х-у=2
Вычтем из первого уравнения второе уравнение:
2х-у-3х+у=-1-2
-х=-3
х=-3 : -1
х=3
Подставим значение х=3 в первое уравнение:
2*3 -у=-1
-у=-1-6
-у=-7
у=-7 : -1
у=7
Отсюда: х/у=3/7
ответ: Искомая дробь равна 3/7