14 Знайдіть значення b, при якому графік ква- дратичної функції у = х2 +bx +15 проходить через точку м (2; 3). Запишіть формулу, якою задано функцію. Побудуйте графік функції та визначте проміжки її зростання та спадання.
Общий вид уравнения касательной к графику функции у = f(x) в точке х = х0 имеет вид у = f'(x0)(x - x0) + f(x0). Найдем уравнение производной f'(x) для функции f(x) = x^3 - 10x^2 + 1 f'(x) = 3x^2 - 10*2x + 0 = 3x^2 - 20x. Здесь ^ - знак возведения в степень, * - знак умножения. Найдем значение производной f'(x) в точке х = х0 = 1 f'(x0) = f'(1) = 3*1^2 - 20*1 = -17. Найдем значение функции f(x) в точке х = х0 = 1 f(x0) = f(1) = 1^3 - 10*1^2 + 1 = -8. Подставим в общее уравнеие касательной числовые значения f'(1), x0, f(1) y = -17(x - 1) - 8, y = -17x + 9. ответ: у = -17х + 9.
Общий вид уравнения касательной к графику функции у = f(x) в точке х = х0 имеет вид
у = f'(x0)(x - x0) + f(x0).
Найдем уравнение производной f'(x) для функции f(x) = x^3 - 10x^2 + 1
f'(x) = 3x^2 - 10*2x + 0 = 3x^2 - 20x.
Здесь ^ - знак возведения в степень, * - знак умножения.
Найдем значение производной f'(x) в точке х = х0 = 1
f'(x0) = f'(1) = 3*1^2 - 20*1 = -17.
Найдем значение функции f(x) в точке х = х0 = 1
f(x0) = f(1) = 1^3 - 10*1^2 + 1 = -8.
Подставим в общее уравнеие касательной числовые значения f'(1), x0, f(1)
y = -17(x - 1) - 8, y = -17x + 9.
ответ: у = -17х + 9.
Пусть x км/ч - скорость велосипедиста.
Тогда (x+30) км/xч - скорость мотоциклиста.
Каждый проехал 15 км, т.к. встретились на середине.
Т.к. мотоциклист выехал на 40 минут позже, значит, велосипедист ехал на 40 минут дольше мотоциклиста. 40 минут = 2/3 часа. Отсюда уравнение:
15/x-15/(x+30)=2/3
450/(x²+30x)=2/3
3*450=2*(x²+30x)
1350=2x₂+60x
2x²+60x-1350=0 |:2
x²+30x-675=0
D=900+2700=3600
x₁=15
x₂=-45 <- посторонний корень
Скорость велосипедиста - 15 км/ч. Значит, скорость мотоциклиста - 45 км/ч.