(x-1)(x+3)=0 (если произведение равно 0, то один из множителей равен 0) 1-x=0 или x+3=0 x=1 x=-3 ответ:-3;1 (ответ записывается от меньшего к большему)
(2x-3)²=0 (результатом возведения в степень может быть 0 только тогда, когда основание равно 0) 2x-3=0 x= (можем перевести в десятичную дробь =1,5) ответ: или 1,5
x²-2x=0 (выносим за скобки общий множитель, в данном случае x) x(x-2)=0 x=0 или x-2=0 x=0 x=2 ответ:0;2
x²+12x+36=0 (раскладываем выражение на множители по формуле) (x+6)²=0 x+6=0 x+6=0 (результатом возведения в степень может быть 0 только тогда, когда основание равно 0) x=-6
Арифметическая прогрессия - это последовательность, у которой каждое последующее число получается из предыдущего добавлением к нему постоянного числа d, называемого шагом или разностью. Шаг м.б. как положительным, так и отрицательным числом. 1) Проверим, будет ли постоянным шаг, если из n-го члена последовательности вычесть (n-1)-й член. n-й член нам дан: an = 5n + 3, найдём (n-1)-й: a(n-1) = 5 (n - 1) + 3 = 5n -2. Вычитаем, an - a(n-1) = 5n + 3 - 5n + 2 = 5 = d Получили постоянную, которая не зависит от n, значит, это арифметическая прогрессиия, d = 5. Считаем сумму 10 первых членов по формуле: Sn = (1/2) * (2*a1 + d*(n - 1)) * n Для этого надо знать ещё a1 = 5 *1 + 3 = 8 S10 = (1/2) * (2*8 + 5*(10-1))*10= (16 + 45)*5 = 305
1-x=0 или x+3=0
x=1 x=-3
ответ:-3;1 (ответ записывается от меньшего к большему)
(2x-3)²=0 (результатом возведения в степень может быть 0 только тогда, когда основание равно 0)
2x-3=0
x= (можем перевести в десятичную дробь =1,5)
ответ: или 1,5
x²-2x=0 (выносим за скобки общий множитель, в данном случае x)
x(x-2)=0
x=0 или x-2=0
x=0 x=2
ответ:0;2
x²+12x+36=0 (раскладываем выражение на множители по формуле)
(x+6)²=0
x+6=0
x+6=0 (результатом возведения в степень может быть 0 только тогда, когда основание равно 0)
x=-6
1) Проверим, будет ли постоянным шаг, если из n-го члена последовательности вычесть (n-1)-й член.
n-й член нам дан: an = 5n + 3, найдём (n-1)-й:
a(n-1) = 5 (n - 1) + 3 = 5n -2.
Вычитаем, an - a(n-1) = 5n + 3 - 5n + 2 = 5 = d
Получили постоянную, которая не зависит от n, значит, это арифметическая прогрессиия, d = 5.
Считаем сумму 10 первых членов по формуле: Sn = (1/2) * (2*a1 + d*(n - 1)) * n
Для этого надо знать ещё a1 = 5 *1 + 3 = 8
S10 = (1/2) * (2*8 + 5*(10-1))*10= (16 + 45)*5 = 305
2) Поступаем аналогично.
an = 5 - n/2; a(n-1) = 5 - (n-1)/2 = 5.5 - n/2
Находим разность an - a(n-1) = 5 - n/2 - 5.5 + n/2 = -0.5 = d
Находим a1 = 5 - 1/2 = 4.5
Находим сумму первых 10 членов
S10= (1/2) * (2*4.5 + (-0.5)*(10 - 1))*10 = (9 - 4.5) * 5 = 4.5*5 = 22.5