Площадь фигуры может быть вычислена через определённый интеграл.
График функции y=3x² - 2 - квадратная парабола веточками вверх. Вершина параболы находится в точке А(0; -2). Парабола пересекает ось х в двух точках:
х₁ = -√2/3 ≈ -0,816
х₂ = √2/3 ≈ 0,816
Найдём пределы интегрирования
При х = 1 y=3x² - 2 = 1
Эта точка находится правее нуля функции в точке х₂ ≈ 0,816, т.е. в области положительных у, поэтому нижний предел х = 1, ну, а верхний предел, естественно, х = 2.
Если корни многочлена с меньшей степенью совпадают с корнями многочлена большей степени - то многочлен большей степени делится на многочлен меньшей степени
Для примера x^2 - 2x + 1 делится на x-1 (корень 1)
x-1=0 x=1
(x -1)^2 = 0 x=1
и не делится на х+1
Так и здесь найдем корни многочлена второй степени и подставим в многочлен 5-й степени, если и там будут корни, то значит делится, если нет - то не делится
x^2 - 3x - 18 = 0
D = 9 + 72 = 81
x12=(3+-9)/2 = 6 -3
(x+3)(x-6) = 0
подставляем найденные значения в x^5 − 4x^4 − 13x^3 + 216 = 0
Площадь фигуры может быть вычислена через определённый интеграл.
График функции y=3x² - 2 - квадратная парабола веточками вверх. Вершина параболы находится в точке А(0; -2). Парабола пересекает ось х в двух точках:
х₁ = -√2/3 ≈ -0,816
х₂ = √2/3 ≈ 0,816
Найдём пределы интегрирования
При х = 1 y=3x² - 2 = 1
Эта точка находится правее нуля функции в точке х₂ ≈ 0,816, т.е. в области положительных у, поэтому нижний предел х = 1, ну, а верхний предел, естественно, х = 2.
Интегрируем: ∫(3x² - 2)dx = x³ - 2x.
Подставляем пределы:
S = (2³ - 2·2) - (1³ - 2·1) = 4+1 = 5
ответ: Площадь фигуры равна 5
Если корни многочлена с меньшей степенью совпадают с корнями многочлена большей степени - то многочлен большей степени делится на многочлен меньшей степени
Для примера x^2 - 2x + 1 делится на x-1 (корень 1)
x-1=0 x=1
(x -1)^2 = 0 x=1
и не делится на х+1
Так и здесь найдем корни многочлена второй степени и подставим в многочлен 5-й степени, если и там будут корни, то значит делится, если нет - то не делится
x^2 - 3x - 18 = 0
D = 9 + 72 = 81
x12=(3+-9)/2 = 6 -3
(x+3)(x-6) = 0
подставляем найденные значения в x^5 − 4x^4 − 13x^3 + 216 = 0
1. х=-3
(-3)^5 - 4 *(-3)^4 - 13*(-3)^3 + 216 = -243 - 324 + 351 + 216 = - 567 + 567 = 0 да корень
2. х=6
6^5 - 4*6^4 - 13*6^3 + 216 = 7776 - 5184 - 2808 + 216 = 7992 - 7992 = 0
да корень
Значит многочлен пятой степени делится на многочлен второй степени без остатка
(x^5 − 4x^4 − 13x^3 + 216) / ( x^2 − 3x − 18) = x^3 - x^2 + 2x - 12