15, 1) Исследуйте, существуют ли два последовательных натураль- ных числа, произведение которых равно 240, б) Пайдите два числа, сумма которых равна 14, а сумма их ква- дратов равна 106,
по условию пирамида правильная треугольная, => основание высоты пирамиды - центр описанной около треугольника окружности - точка пересечения высот правильного треугольника, которые точкой пересечения делятся в отношении 2:1 считая от вершины.
прямоугольный треугольник: гипотенуза с=5 см - длина бокового ребра правильной треугольной пирамиды катет а=3 см - высота правильной пирамиды катет b найти, по теореме Пифагора: 5²=3²+b². b=4 см
b- (1/3) высоты правильного треугольника, которая вычисляется по формуле:
Sосн=a²√3/4, а - сторона правильного треугольника
по условию пирамида правильная треугольная, => основание высоты пирамиды - центр описанной около треугольника окружности - точка пересечения высот правильного треугольника, которые точкой пересечения делятся в отношении 2:1 считая от вершины.
прямоугольный треугольник:
гипотенуза с=5 см - длина бокового ребра правильной треугольной пирамиды
катет а=3 см - высота правильной пирамиды
катет b найти,
по теореме Пифагора: 5²=3²+b². b=4 см
b- (1/3) высоты правильного треугольника, которая вычисляется по формуле:
a=8/√3
27*(2/3)^x - 8 = 0
(2/3)^x = 8/27
(2/3)^x = (2/3)^3
x = 3
ответ: х = 3
2) 2^(x+1) - 2^(x-1)=3^(2-x)
2*(2^x) - (1/2)*(2^x) = 9/(3^x)
(2^x) *(2 - 1/2) = 9/(3^x)
(2^x)*(3/2) = 9/(3/2)
(6^x) = 6^1
x = 1
ответ: х = 1
3) 9*(4^x) - 13*(6^x) + 4*(9^x) = 0
9*(2^2x) - 13*(2^x)*(3^x) + 4*(3^2x) = 0 /(3^2x)
9*(2/3)^2x - 13*(2/3)^x + 4 = 0
(2/3)^x = t
9t^2 - 13t + 4 = 0
D = 169 - 4*9*4 = 25
t1 = (13 - 5)/18
t1 = 4/9
t2 = (13 + 5)/18
t2 = 1
1) (2/3)^x = 4/9
(2/3)^x = (2/3)^2
x1 = 2
2) (2/3)^x = 1
(2/3)^x = (2/3)^0
x2 = 0
ответ: x1 = 2; x2 = 1