Нанесем на числовую ось корни обращающие выражение в 0 это кор из 2 и -кор из 3
оо> -к из 3 к из 2
+ - + определим знаки выражения на каждом интервале при x> к из 2 например x=10 выражение имеет знак + при -к из3 <x< к из 2 например х=0 выражение имеет знак - при х<-к из 3 например х=-10 обе скобки отрицательны а их произведение>0 таким образом -к из 3 < х< к из 2 или х принадлежит интервалу (-бесконечность, -к из 3) объединяется с интервалом (к из 2, +бесконечность)
1) Строить график не буду, объяню как решать.
y = -x^2+4x - квадратичная функция
График - парабола, ветви вниз, т.к. перед x^2 отрицательный коэффициент.
Вершина параболы
x(0) = -b/2a = -4/2*(-1) = -4/-2 = 2
y(0) = 4
Таблица значений
x|0|1|2|3|4
y|0|3|4|3|0
Строишь по клеткам параболу.
а)
Значение функции = значение на оси Оу
На оси х находишь точки 0 и 3 проводишь пунктирную линию к графику.
Получается
у наиб = 3
y наим = 0
б) y возрастает на примежутке ( минус бесконечность; 2]
убывает на промежутке [2; +бесконечность);
в)4x^2 - x^2 < 0
4x^2 - x^2 = 0
3x^2 = 0
x^2 = 0
x = 0
x (0; + бесконечность)
оо>
-к из 3 к из 2
+ - +
определим знаки выражения на каждом интервале
при x> к из 2 например x=10 выражение имеет знак +
при -к из3 <x< к из 2 например х=0 выражение имеет знак -
при х<-к из 3 например х=-10 обе скобки отрицательны а их произведение>0
таким образом -к из 3 < х< к из 2
или х принадлежит интервалу (-бесконечность, -к из 3) объединяется с интервалом (к из 2, +бесконечность)