Уравнение квадратной параболы в общем виде: у = ах² + вх + с Найдём коэффициенты а, в, с Подставим координаты точки А -6 = а· 0² + в·0 + с → с = -6 Подставим координаты точки В -9 = а·1² + в·1 - 6 → а + в = -3 (1) Подставим координаты точки С 6 = а·6² + в·6 - 6 → 6а + в = 2 → в = 2 - 6а (2) Подставим (2) а (1) а + 2 - 6а = -3 → а = 1 Из (2) получим в = -4 Итак, мы получили уравнение параболы: у = х² - 4х - 6 Абсцисса вершины параболы: m =-в/2а = 4 / 2 = 2 Ординату вершины параболы найдём, подставив в уравнение параболы х = m = 2 у = 2² - 4 · 2 - 6 = -10 ответ: вершиной параболы является точка с координатами (2; -10)
1)Построить графики. Графики линейной функции, прямые линии. Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу. Для построения прямой достаточно двух точек, для точности построения определим три.
у = х - 3 у = 2х - 1
Таблицы:
х -1 0 1 х -1 0 1
у -4 -3 -2 у -3 -1 1
Согласно графиков, координаты точки пересечения (-2; -5).
2) Любой график пересекает ось Ох при у равном нулю:
у = х - 3; у = 0;
х - 3 = 0
х = 3;
Координаты пересечения графиком оси Ох (3; 0).
2.
1) Любой график пересекает ось Ох при у равном нулю:
у = 1,2х - 24; у = 0;
1,2х - 24 = 0
1,2х = 24
х = 24/1,2
х = 20;
Координаты пересечения графиком оси Ох (20; 0).
2) Любой график пересекает ось Оу при х равном нулю:
у = 1,2х - 24; х = 0;
у = 0 - 24
у = -24;
Координаты пересечения графиком оси Оу (0; -24).
3) Любой график пересекает ось Ох при у равном нулю:
у = -7 + 14х; у = 0;
-7 + 14х = 0
14х = 7
х = 7/14
х = 0,5;
Координаты пересечения графиком оси Ох (0,5; 0).
4) Любой график пересекает ось Оу при х равном нулю:
Найдём коэффициенты а, в, с
Подставим координаты точки А
-6 = а· 0² + в·0 + с → с = -6
Подставим координаты точки В
-9 = а·1² + в·1 - 6 → а + в = -3 (1)
Подставим координаты точки С
6 = а·6² + в·6 - 6 → 6а + в = 2 → в = 2 - 6а (2)
Подставим (2) а (1)
а + 2 - 6а = -3 → а = 1
Из (2) получим в = -4
Итак, мы получили уравнение параболы:
у = х² - 4х - 6
Абсцисса вершины параболы: m =-в/2а = 4 / 2 = 2
Ординату вершины параболы найдём,
подставив в уравнение параболы х = m = 2
у = 2² - 4 · 2 - 6 = -10
ответ: вершиной параболы является точка с координатами (2; -10)
В решении.
Объяснение:
1.
1)Построить графики. Графики линейной функции, прямые линии. Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу. Для построения прямой достаточно двух точек, для точности построения определим три.
у = х - 3 у = 2х - 1
Таблицы:
х -1 0 1 х -1 0 1
у -4 -3 -2 у -3 -1 1
Согласно графиков, координаты точки пересечения (-2; -5).
2) Любой график пересекает ось Ох при у равном нулю:
у = х - 3; у = 0;
х - 3 = 0
х = 3;
Координаты пересечения графиком оси Ох (3; 0).
2.
1) Любой график пересекает ось Ох при у равном нулю:
у = 1,2х - 24; у = 0;
1,2х - 24 = 0
1,2х = 24
х = 24/1,2
х = 20;
Координаты пересечения графиком оси Ох (20; 0).
2) Любой график пересекает ось Оу при х равном нулю:
у = 1,2х - 24; х = 0;
у = 0 - 24
у = -24;
Координаты пересечения графиком оси Оу (0; -24).
3) Любой график пересекает ось Ох при у равном нулю:
у = -7 + 14х; у = 0;
-7 + 14х = 0
14х = 7
х = 7/14
х = 0,5;
Координаты пересечения графиком оси Ох (0,5; 0).
4) Любой график пересекает ось Оу при х равном нулю:
у = -7 + 14х; х = 0;
у = -7 + 0
у = -7;
Координаты пересечения графиком оси Оу (0; -7).