Итак, чтобы уравнение имело смысл, а должно быть больше нуля. По свойству модуля: 1)x^2-5ax=15a 2)x^2-5ax=-15a Решим первое уравнение: x^2-5ax-15a=0 Чтобы квадратное уравнение имело два корня, D(дискриминант) должен быть больше нуля: D=(-5a)^2-4*(-15a)=25a^2+60a=5a(5a+12)>0 +(-2,4)-(0)+
a e (0; + беск.) Нас не устраивает промежуток a e (-беск.; -2,4) 2)x^2-5ax=-15a x^2-5ax+15a=0 D=(-5a)^2-4*15a=25a^2-60a=5a(5a-12)>0 +(0)-(2,4)+ a e (2,4; + беск.) Нас не устраивает промежуток a e (-беск.;0) Объединяя два решения, получаем: ответ: a e (2,4; + беск.)
По свойству модуля:
1)x^2-5ax=15a
2)x^2-5ax=-15a
Решим первое уравнение:
x^2-5ax-15a=0
Чтобы квадратное уравнение имело два корня, D(дискриминант) должен быть больше нуля:
D=(-5a)^2-4*(-15a)=25a^2+60a=5a(5a+12)>0
+(-2,4)-(0)+
a e (0; + беск.)
Нас не устраивает промежуток a e (-беск.; -2,4)
2)x^2-5ax=-15a
x^2-5ax+15a=0
D=(-5a)^2-4*15a=25a^2-60a=5a(5a-12)>0
+(0)-(2,4)+
a e (2,4; + беск.)
Нас не устраивает промежуток a e (-беск.;0)
Объединяя два решения, получаем:
ответ: a e (2,4; + беск.)
Объяснение:
1. надо сложить первое и второе уравнение, где - и + взаимно уничтожаются
2х=12 , х=6 теперь умножим на -1 второе уравнение, получаем -х + y=-7 , сложим, отсюда 2 y = -2, y = -1
2. 4 х = 16, х = 4
2 y = -6, y = -3
3. Здесь надо домножить , чтоб получить одинаковые коэффициенты
6х+9y=-3
6х+10 y=-4дальше все также только вычесть ...получаем -у=1, у=-1,
далее методом подстановки 6х+9 х (-1) =-3, 6х=-3+9, 6х=6, х=1
4. 6х-9y=-3
6х+8y=48
-9y-8y=-3-48, -17 y =-51, y=3
6х-9х3=-3, 6х=-3+27, 6х=24, х=4
5. 6x-2y=10
6x+21y=33
-2y-21y=10-33,-23 y=-23, y=1
6х-2х1=10, 6х=10+2, 6х=12, х=2