а) График которой проходит через точку с координатами А(а; 3√5). Найдите значение а.
Нужно в уравнение подставить известные значения х и у (координаты точки А):
3√5 = √а
(3√5)² = (√а)²
9*5 = а
а=45;
б) проходит ли график этой функции через точки А(36; -6), B(0,81; 0,9).
Чтобы определить принадлежность точки графику, нужно известные значения х и у (координаты точки) подставить в уравнение. Если левая часть равна правой, то принадлежит, и наоборот.
1) А(36; -6)
-6 = ±√36
-6 = -6, проходит.
2) B(0,81; 0,9)
0,9 = ±√0,81
0,9 = 0,9, проходит.
в) Если х∈[4; 8], то какие значения будет принимать данная функция?
1) Область определения функции - все действительные числа, так как при а>0 под корнем находится положительное число, следовательно из него можно извлечь квадратный корень. График функции непрерывен на всей области определения. Так как для функции выполняется соотношения f(-x)=f(x), то она является четной функцией. Функция не имеет периода. 2)
Значит, асимптотой является прямая y=x, а также симметричная ей прямая относительно оси ординат y=-x, так как функция четная 3)
При а>0 это уравнение не имеет решений, значит нулей у функции нет. Так как квадратный корень принимает только неотрицательные значения, то функция на всей области определения положительна. 4)
Производная равна нулю только в точке х=0 - это точка минимума, так как производная меняет свой знак с "-" на "+". Следовательно, при х<0, то есть при отрицательной производной, функция убывает, при х>0 - возрастает, так как производная больше нуля. Минимум функции находим как значение самой функции в точке минимума:
5)
Вторая производная при любых а>0 и х положительна, значит функция на всей области определения вогнута и у нее нет точек перегиба.
1)
Функция не является непрерывной, так как она не она не определена при . Так как для функции выполняется соотношения f(-x)=f(x), то она является четной функцией. Функция не имеет периода. 2)
Значит, асимптотой является прямая y=x, а также симметричная ей прямая относительно оси ординат y=-x, так как функция четная 3) Нули функции:
Так как квадратный корень принимает только неотрицательные значения, то функция в остальных точках области определения, то есть при положительна. 4)
Производная равна нулю только в точке х=0, однако эта точка попадает в область определения функции только при а=0. В общем случае, при , то есть при отрицательной производной, функция убывает, при - возрастает, так как производная больше нуля. Точки минимума совпадают с нулями функции и соответственно сами минимумы равны нулю. 5)
Вторая производная при любых а>0 и х отрицательна, значит функция на всей области определения выпукла (в знаменателе стоит выражение, которое в соответствии с областью определения не может быть отрицательным числом), точек перегиба у функции нет.
В решении.
Объяснение:
Дана функция у=√х:
а) График которой проходит через точку с координатами А(а; 3√5). Найдите значение а.
Нужно в уравнение подставить известные значения х и у (координаты точки А):
3√5 = √а
(3√5)² = (√а)²
9*5 = а
а=45;
б) проходит ли график этой функции через точки А(36; -6), B(0,81; 0,9).
Чтобы определить принадлежность точки графику, нужно известные значения х и у (координаты точки) подставить в уравнение. Если левая часть равна правой, то принадлежит, и наоборот.
1) А(36; -6)
-6 = ±√36
-6 = -6, проходит.
2) B(0,81; 0,9)
0,9 = ±√0,81
0,9 = 0,9, проходит.
в) Если х∈[4; 8], то какие значения будет принимать данная функция?
у= √х
у=√4=2;
у=√8=√4*2=2√2;
При х∈ [4; 8] у∈ [2; 2√2].
с) y∈ [6; 13]. Найдите значение аргумента.
6 = √х
(6)² = (√х)²
х=36;
13 = √х
(13)² = (√х)²
х=169;
При х∈ [36; 169] y∈ [6; 13].
Область определения функции - все действительные числа, так как при а>0 под корнем находится положительное число, следовательно из него можно извлечь квадратный корень. График функции непрерывен на всей области определения. Так как для функции выполняется соотношения f(-x)=f(x), то она является четной функцией. Функция не имеет периода.
2)
Значит, асимптотой является прямая y=x, а также симметричная ей прямая относительно оси ординат y=-x, так как функция четная
3)
При а>0 это уравнение не имеет решений, значит нулей у функции нет. Так как квадратный корень принимает только неотрицательные значения, то функция на всей области определения положительна.
4)
Производная равна нулю только в точке х=0 - это точка минимума, так как производная меняет свой знак с "-" на "+". Следовательно, при х<0, то есть при отрицательной производной, функция убывает, при х>0 - возрастает, так как производная больше нуля. Минимум функции находим как значение самой функции в точке минимума:
5)
Вторая производная при любых а>0 и х положительна, значит функция на всей области определения вогнута и у нее нет точек перегиба.
1)
Функция не является непрерывной, так как она не она не определена при . Так как для функции выполняется соотношения f(-x)=f(x), то она является четной функцией. Функция не имеет периода.
2)
Значит, асимптотой является прямая y=x, а также симметричная ей прямая относительно оси ординат y=-x, так как функция четная
3)
Нули функции:
Так как квадратный корень принимает только неотрицательные значения, то функция в остальных точках области определения, то есть при положительна.
4)
Производная равна нулю только в точке х=0, однако эта точка попадает в область определения функции только при а=0. В общем случае, при , то есть при отрицательной производной, функция убывает, при - возрастает, так как производная больше нуля. Точки минимума совпадают с нулями функции и соответственно сами минимумы равны нулю.
5)
Вторая производная при любых а>0 и х отрицательна, значит функция на всей области определения выпукла (в знаменателе стоит выражение, которое в соответствии с областью определения не может быть отрицательным числом), точек перегиба у функции нет.