17.4. Ученик по алгебре за ІІІ четверть получил оценки, представлен ные в таблице 28.
Таблица 28
Оценка
2
3
4
5
Абсолютная частота
Относительная частота
4
6
5
1) Найдите объем генеральной совокупности оценок ученика.
2) Найдите среднее значение его оценок.
3) Какую оценку получил ученик за III четверть?
4) Найдите относительные частоты оценок ученика (заполнить
таблицу 28).
7.5. Для оценок ученика за III четверти
ла
Объяснение:
Число a - корень многочлена P(x) тогда и только тогда, когда P(x) делится без остатка на двучлен x−a .
Отсюда, в частности, следует, что множество корней многочлена P(x) тождественно множеству корней соответствующего уравнения P(x)=0 .
Свободный член многочлена делится на любой целый корень многочлена с целыми коэффициентами (если старший коэффициент равен 1, то все рациональные корни являются и целыми).
Пусть a - целый корень приведенного многочлена P(x) с целыми коэффициентами. Тогда для любого целого k число P(k) делится на a−k .
Теорема Безу дает возможность, найдя один корень многочлена, искать далее корни многочлена, степень которого уже на единицу меньше: если P(a)=0, то заданный многочлен P(x) можно представить в виде:
P(x)=(x−a)Q(x)
Таким образом, один корень найден и далее находятся уже корни многочлена Q(x), степень которого на единицу меньше степени исходного многочлена. Иногда этим приемом - он называется понижением степени - можно найти все корни заданного многочлена.
f " (x) = (arcsinx + 2arccosx) " = 1/ V(1 - x^2) + 2*( - 1/ V(1 - x^2) =
= -1/ V(1 - x^2)
При x = V3/2 f "(V3/2) = -1/ V( 1 - (V3/2)^2) = -1/ V (1 - 3/4) =
= -1/ V1/4 = -1:1/2 = -2
2) tg1.3 * ctg(-1.4) * sin(-0.9) = tg1.3 *(-ctg1.4)*(-sin0.9) = tg1.3*ctg1.4*sin0.9
1.3 в 1 четверти tg1.3 > 0 1.4 в 1 четверти ctg1.4 > 0
0.9 в 1 четверти sin0.9 > 0
Все значения положительные, следовательно произведение положительно.
Объяснение: