170 53. ЧИСЛОВІ ПОСЛІДОВНОСТІ 7.15. При будь-якому п суму п перших членів деякої арифметичної прогресії можна обчислити за формулою S = 3n? + 5n. Знайдіть три перших члени цієї прогресії.
Примем весь объем работы за 1. Скорость первой бригады - х, скорость второй бригады у. Тогда за 3,5 часа первая бригада сделала 3,5 х работы. За 6 часов вторая бригада сделала 6у работы. Все это равно всему объему работы, то ест 1. составим первое уравнение.
3,5 х + 6у = 1. (1)
Второе. По условию весь объем работ вторая бригада выполняла бы на 5 часов больше, чем первая. поэтому вотрое уравнение t2 - t1 = 5;
1/y - 1/x = 5; x - y = 5xy; (2) Получили 2 уравнения с 2 неизвестными. Выразим y через x во втором уравнении. x = 5xy + y; x = y(5x + 1) ; y = x /(5x+1);
y = 1/7 : (5*1/7 +1) = 1/7 : 12/7 = 1/7 * 7/12 = 1/12. Итак, скорость первой бригады равна 1/7. и тогда время, необходимое ей для выполнения всего объема работ, будет равно 1/ 1/7 = 7 дней. Скорость второй бригады равна 1/12 и и тогда время, необходимое ей для выполнения всего объема работ, будет равно 1/ 1/12 = 12 дней. ответ 7 дней для 1 бригады и 12 дней для второй бригады. 12 можно было бы найти проще 5+7 = 12
Корень пятой степени равен -2 возведем обе части в степень 5. 2x-7=(-2)^5=-32 2x=-32+7=-25 x=12.5
выражение в знаменателе ≠0 5х-8≠0 х≠8/5 5х-8>0← под корнем число большее 0 →x>8/5
t+5=√(2t²+19t+43) t+5≥0 → t≥-5 возводим обе части в квадрат → t²+10t+25=2t²+19t+43→ t²+9t+18=0 корни по виетту t1=-3 t2=-6 этот корень меньше -5 и не годится. ответ -3
разность дробей в примере 4 находим используя формулу разности квадратов. (2х^0.5-3y^0.5-2x^0.5-3y^0.5)/(4x^1-9y^1)=-6y^0.5/(4x-3y) умножим -6y^0.5*(2x-9y/2)/(4x-9y)=-6y^0.5(4x-9y)/2(4x-9y)=-3y^0.5= =-3√y
Скорость первой бригады - х, скорость второй бригады у.
Тогда за 3,5 часа первая бригада сделала 3,5 х работы.
За 6 часов вторая бригада сделала 6у работы.
Все это равно всему объему работы, то ест 1.
составим первое уравнение.
3,5 х + 6у = 1. (1)
Второе.
По условию весь объем работ вторая бригада выполняла бы на 5 часов больше, чем первая.
поэтому вотрое уравнение t2 - t1 = 5;
1/y - 1/x = 5;
x - y = 5xy; (2)
Получили 2 уравнения с 2 неизвестными.
Выразим y через x во втором уравнении.
x = 5xy + y;
x = y(5x + 1) ;
y = x /(5x+1);
Подставим в первое уравнение и решим квадратное уравнение:
3,5 x + 6x/(5x+1) = 1;
3,5x *(5x+1) + 6x = 5x + 1;
17,5 x^2 + 3,5x + 6x - 5x - 1 = 0;
17,5 x^2 + 4,5 x - 1 = 0; /*2;
35x^2 + 9x - 2 = 0;
D = 81 - 4*35*(-2) = 81 + 280 = 361= 19^2;
x1 = (-9+19) / 70 = 1/7.
x2= (-9 - 19) /70 = - 2/7 < 0.
Найдем у при х = 1/7.
y = 1/7 : (5*1/7 +1) = 1/7 : 12/7 = 1/7 * 7/12 = 1/12.
Итак, скорость первой бригады равна 1/7. и тогда время, необходимое ей для выполнения всего объема работ, будет равно 1/ 1/7 = 7 дней.
Скорость второй бригады равна 1/12 и и тогда время, необходимое ей для выполнения всего объема работ, будет равно 1/ 1/12 = 12 дней.
ответ 7 дней для 1 бригады и 12 дней для второй бригады.
12 можно было бы найти проще 5+7 = 12
2x-7=(-2)^5=-32 2x=-32+7=-25 x=12.5
выражение в знаменателе ≠0 5х-8≠0 х≠8/5
5х-8>0← под корнем число большее 0 →x>8/5
t+5=√(2t²+19t+43)
t+5≥0 → t≥-5
возводим обе части в квадрат → t²+10t+25=2t²+19t+43→
t²+9t+18=0 корни по виетту t1=-3 t2=-6 этот корень меньше -5 и не годится.
ответ -3
разность дробей в примере 4 находим используя формулу разности квадратов.
(2х^0.5-3y^0.5-2x^0.5-3y^0.5)/(4x^1-9y^1)=-6y^0.5/(4x-3y)
умножим -6y^0.5*(2x-9y/2)/(4x-9y)=-6y^0.5(4x-9y)/2(4x-9y)=-3y^0.5=
=-3√y