19.Даны функции: и 1.найдите абсциссы общих точек графиков функций 2. сколько абсциссы общих точек графиков функций принадлежит интервалу P.S(если можно, то покажите решение)
4. Периметр треугольника ABC равен 50 см. Сторона АВ на 2 см больше стороны ВС, а сторона АС в 2 раза больше стороны ВС. Найдите стороны треугольника
пусть ВС=х, имеем АВ=х+2,а АС=2х
х+х+2+2х=50
4х=48
х=12 см-ВС
АВ=12+2=14 см
АС=2*12=24 см
и задача
Ежедневно рабочий должен был изготовлять 20 деталей, но изготовлял 30. (20+10=30). Пусть за х дней рабочий должен был выполнить задание, тогда за х-4 дня он его выполнил. По условию задачи составляем уравнение:
Это система линейных уравнений с двумя переменными. Их решают сложения и подстановки. подстановки: из одного уравнения выражают какую-нибудь переменную (обычно ту, которую проще выразить) и подставляют это выражение во второе уравнение. Затем решают получившееся уравнение относительно уже одной переменной, полученное решение подставляют в в первое уравнение и находят значение второй переменной. В предложенном примере это сделать трудно из-за больших коэффициентов - можно запутаться. сложения: каждое из уравнений домножаем на такое число, чтобы коэффициенты у одной из переменных стали противоположными числами (например, 5 и -5).. Затем складывают почленно эти уравнения (одна из переменных "исчезает") и решают получившееся уравнение. Далее - как в 1-м Попробуем для Вашего примера. Домножим 1-е уравнение на 2, а 2-е - на 3 (коэффициенты при у станут -54 и 54 - противоположные числа) 32х - 54у = 40 15х + 54у = 124,5 сложим: 47х = 164,5 х = 3,5 Подставим теперь значение х в любое из исходных уравнений и найдем значение у: 5 · 3,5 + 18у = 41,5 17,5 + 18у = 41,5 18у = 41,5 - 17,5 18у = 24 3у = 4 у= 4/3 = 1 целая 1/3 ответ: (3,5; 1 целая 1/3). Подробнее смотрите в учебнике алгебры за 7 класс, а если в системе будут уравнения 2- й степени - то 9-й класс (под ред. Теляковского, Алимова и др.) - их можно даже скачать
а) 4а² - 12ab +9b²
б) (5x)² - (3y)² = 25x² - 9y²
в) 2a³(a² + 4ab + 4b²) = 2a^5 + 8a^4b + 8a³b²
2а-3 )²+ ( 3-2а )( 3+2а ) -3 ( а+2 )( 3а-1 )=4a²-12a +9+9-4a²-9a²-3a-18a-6= -9a² -33a+12
-50-20х-2х²= - 2(х²+10x+25)= -2 (x+5)(x+5)
1. У выражение: а) 3а2b • (-5а3b)=-15а^5b^2
б) (2х2у)3=8х^6у^3
2. Решите уравнение 3х - 5 (2х + 1) = 3 (3 - 2х)
3х-10х-5=9-6х
-7х+6х=9+5
-х=14
х=-14.
3. Разложите на множители: а) 2ху - 6y2=2у(х-6y)
б) а3 - 4а=а(а^2-4)
4. Периметр треугольника ABC равен 50 см. Сторона АВ на 2 см больше стороны ВС, а сторона АС в 2 раза больше стороны ВС. Найдите стороны треугольника
пусть ВС=х, имеем АВ=х+2,а АС=2х
х+х+2+2х=50
4х=48
х=12 см-ВС
АВ=12+2=14 см
АС=2*12=24 см
и задача
Ежедневно рабочий должен был изготовлять 20 деталей, но изготовлял 30. (20+10=30). Пусть за х дней рабочий должен был выполнить задание, тогда за х-4 дня он его выполнил. По условию задачи составляем уравнение:
30(x-4)=20x
30x-120=20x
30x-20x=120
10x=120
x=120:10
x=12
ответ: за 12 дней
5х + 18у = 41,5
Это система линейных уравнений с двумя переменными. Их решают сложения и подстановки.
подстановки: из одного уравнения выражают какую-нибудь переменную (обычно ту, которую проще выразить) и подставляют это выражение во второе уравнение. Затем решают получившееся уравнение относительно уже одной переменной, полученное решение подставляют в в первое уравнение и находят значение второй переменной.
В предложенном примере это сделать трудно из-за больших коэффициентов - можно запутаться.
сложения: каждое из уравнений домножаем на такое число, чтобы коэффициенты у одной из переменных стали противоположными числами (например, 5 и -5).. Затем складывают почленно эти уравнения (одна из переменных "исчезает") и решают получившееся уравнение. Далее - как в 1-м
Попробуем для Вашего примера.
Домножим 1-е уравнение на 2, а 2-е - на 3 (коэффициенты при у станут -54 и 54 - противоположные числа)
32х - 54у = 40
15х + 54у = 124,5
сложим:
47х = 164,5
х = 3,5
Подставим теперь значение х в любое из исходных уравнений и найдем значение у:
5 · 3,5 + 18у = 41,5
17,5 + 18у = 41,5
18у = 41,5 - 17,5
18у = 24
3у = 4
у= 4/3 = 1 целая 1/3
ответ: (3,5; 1 целая 1/3).
Подробнее смотрите в учебнике алгебры за 7 класс, а если в системе будут уравнения 2- й степени - то 9-й класс (под ред. Теляковского, Алимова и др.) - их можно даже скачать