Рассмотрим последние цифры степеней чисел 3 и 7 (очевидно, степени чисел 33 и 77 оканчиваются на те же цифры; в таблице последняя цифра числа x обозначена как x mod 10):
Дальше таблицу можно не продолжать: поскольку последняя цифра степени определяется только последней цифрой предыдущей степени, то дальше всё будет повторяться: например, для степеней тройки дальше идут 3, 9, 7, 1, 3, 9, ... Таким образом, последовательность последних цифр степеней тройки и семёрки является периодической с периодом 4, то есть прибавление любого количества четвёрок к показателю степени последнюю цифру не меняет.
, поэтому оканчивается на ту же цифру, что и , то есть на 3. , поэтому оканчивается на ту же цифру, что и , то есть на 7. Значит, сумма оканчивается на ту же цифру, что и , то есть на 0. Искомый остаток равен нулю.
Для решения задачи через квадратное уравнение, необходимо обозначит скорость течения реки как х км/ч.
В таком случае, скорость теплохода по течению будет равна: (18 + х) км/ч.
Скорость теплохода против течения реки составит: (18 - х) км/ч.
Получим уравнение суммы времени.
(50 / (18 + х)) + (8 / (18 - х)) = 3
900 - 50 * х + 144 + 8 * х = -3 * х^2 + 972.
3 * х^2 - 42 * х + 72 = 0.
х^2 - 14 * х + 24 = 0.
Д^2 = (-14)^2 - 4 * 1 * 24 = 196 + 96 = 100.
Д = 10.
х = (14 - 10) / 2 = 4 / 2 = 2 км/ч.
Скорость течения реки 2 км/ч.
Рассмотрим последние цифры степеней чисел 3 и 7 (очевидно, степени чисел 33 и 77 оканчиваются на те же цифры; в таблице последняя цифра числа x обозначена как x mod 10):
Дальше таблицу можно не продолжать: поскольку последняя цифра степени определяется только последней цифрой предыдущей степени, то дальше всё будет повторяться: например, для степеней тройки дальше идут 3, 9, 7, 1, 3, 9, ... Таким образом, последовательность последних цифр степеней тройки и семёрки является периодической с периодом 4, то есть прибавление любого количества четвёрок к показателю степени последнюю цифру не меняет.
, поэтому оканчивается на ту же цифру, что и , то есть на 3. , поэтому оканчивается на ту же цифру, что и , то есть на 7. Значит, сумма оканчивается на ту же цифру, что и , то есть на 0. Искомый остаток равен нулю.
ответ. 0