Пусть точка C(0, m) - центр окружности (так как по условию центр лежит на оси OY, то первая координата равна 0)
Известно, что расстояние от центра до любой точки на окружности является константой и равно радиусу R окружности
Наша окружность проходит через точку 7 на оси OY, значит R = 7 - m
Также окружность проходит через точку 5 на оси OX, значит по теореме Пифагора
Приравняем это и получим уравнение:
Возвёдём в квадрат и решим уравнение:
Координата центра окружности -
Радиус окружности:
Уравнение окружности выглядит следующим:
Подставим наши числа:
ответ:
Первая труба наполнит бассейн за: T1 час;
2. Второй трубой бассейн наполнится за: T2 час;
3. Скорость наполнения первой трубы: P1 = 1/T1 (1/час);
4. Скорость наполнения второй трубы: P2 = 1/T2 (1/час);
5. Составляем два уравнения по условиям задачи:
0,1 * (1 / P1) + 0,9 * (1 / P2) = 4;
0,9 * (1 / P1) + 0,1 * (1 / P2) = 28/3;
6. Заменяем переменные:
0,1 * T1 + 0,9 * T2 = 4;
0,9 * T1 + 0,1 * T2 = 28/3;
T2 = (4 - 0,1 * T1) / 0,9;
0,9 * T1 + 0,1 * (4 - 0,1 * T1) / 0,9 = 28/3
8,1 * T1 + 4 - 0,1 T1 = 84;
8 * T1 = 80;
T1 = 80 / 8 = 10 часов.
ответ: первая труба наполнит бассейн за 10 часов
Пусть точка C(0, m) - центр окружности (так как по условию центр лежит на оси OY, то первая координата равна 0)
Известно, что расстояние от центра до любой точки на окружности является константой и равно радиусу R окружности
Наша окружность проходит через точку 7 на оси OY, значит R = 7 - m
Также окружность проходит через точку 5 на оси OX, значит по теореме Пифагора
Приравняем это и получим уравнение:
Возвёдём в квадрат и решим уравнение:
Координата центра окружности -
Радиус окружности:
Уравнение окружности выглядит следующим:
Подставим наши числа:
ответ:
Первая труба наполнит бассейн за: T1 час;
2. Второй трубой бассейн наполнится за: T2 час;
3. Скорость наполнения первой трубы: P1 = 1/T1 (1/час);
4. Скорость наполнения второй трубы: P2 = 1/T2 (1/час);
5. Составляем два уравнения по условиям задачи:
0,1 * (1 / P1) + 0,9 * (1 / P2) = 4;
0,9 * (1 / P1) + 0,1 * (1 / P2) = 28/3;
6. Заменяем переменные:
0,1 * T1 + 0,9 * T2 = 4;
0,9 * T1 + 0,1 * T2 = 28/3;
T2 = (4 - 0,1 * T1) / 0,9;
0,9 * T1 + 0,1 * (4 - 0,1 * T1) / 0,9 = 28/3
8,1 * T1 + 4 - 0,1 T1 = 84;
8 * T1 = 80;
T1 = 80 / 8 = 10 часов.
ответ: первая труба наполнит бассейн за 10 часов