Желтых 4 ж. зеленых --- 6 ж. взято 3 ж. Р(1 др.) ? Решение. 1-ы й с п о с о б. 4 + 6 = 10 всего жетонов. Р(все жел.) = (4/10)*(3/9)*(2/8) = 1/30 Р(все зел.) = (6/10)*(5/9)*(4/8) = 1/6 События вынимания жетона в очередной раз того же цвета не зависят друг от друга, поэтому их вероятности перемножаются. Но с каждым разом вероятности вынуть жетон опять того же цвета уменьшается, т.к. жетоны назад не возвращаются, Становится меньше и жетонов этого цвета, и вообще меньше жетонов. Вероятность вынимания жетонов одного цвета складывается из вероятности вынуть все зеленые или все желтые. Р(один.) = Р(все жел.) + Р(все зел.) = 1/30 + 1/6 = (5+1)/30 = 6/30 = 1/5 = 0,2 Суммарная вероятность вынуть 3 жетона с окраской равна 1 (других цветов и неокрашенных жетонов нет), она складывается из вероятностей вынуть какой-то набор. Вероятность трех одинаковых найдена. Для вычисления вероятности того, в наборе будут представлены оба цвета, надо из 1 вычесть вероятность трех одинаковых. Р(1 др.) = 1 - Р(один.) = 1 - 0,2 = 0,8 ответ:0,8 2-о й с п о с о б. 4 + 6 = 10 всего жетонов. С₁₀³ = 10!/(3!(10-3)!) = 10!/(3!*7!) = (10*9*8*7!)/(1*2*3*7!)=120 всего вынуть три жетона из десяти С₄² * С₆¹ = (4!/(2!*2!))*(6!/(1*5!)) = ((4*3*2)/(2*2))*((6*5!)/5!)) = 36 всего вынуть два желтых и один зеленый жетон. С₆² * С₄¹ = (6!/(2!*4!))*(4!/3!) = ((6*5*4!)/(2*4!))*(4*3!/3!) = 60 всего вынуть два зеленых жетона и один желтый 36 + 60 = 96 всего благоприятных дающих нужный результат). Р(1 др.) = 96/120 = 8/10 = 0,8 вероятность появления жетона другого цвета в наборе из трех вынутых . ответ:0,8
зеленых --- 6 ж.
взято 3 ж.
Р(1 др.) ?
Решение.
1-ы й с п о с о б.
4 + 6 = 10 всего жетонов.
Р(все жел.) = (4/10)*(3/9)*(2/8) = 1/30
Р(все зел.) = (6/10)*(5/9)*(4/8) = 1/6
События вынимания жетона в очередной раз того же цвета не зависят друг от друга, поэтому их вероятности перемножаются. Но с каждым разом вероятности вынуть жетон опять того же цвета уменьшается, т.к. жетоны назад не возвращаются, Становится меньше и жетонов этого цвета, и вообще меньше жетонов.
Вероятность вынимания жетонов одного цвета складывается из вероятности вынуть все зеленые или все желтые.
Р(один.) = Р(все жел.) + Р(все зел.) = 1/30 + 1/6 = (5+1)/30 = 6/30 = 1/5 = 0,2
Суммарная вероятность вынуть 3 жетона с окраской равна 1 (других цветов и неокрашенных жетонов нет), она складывается из вероятностей вынуть какой-то набор. Вероятность трех одинаковых найдена. Для вычисления вероятности того, в наборе будут представлены оба цвета, надо из 1 вычесть вероятность трех одинаковых.
Р(1 др.) = 1 - Р(один.) = 1 - 0,2 = 0,8
ответ:0,8
2-о й с п о с о б.
4 + 6 = 10 всего жетонов.
С₁₀³ = 10!/(3!(10-3)!) = 10!/(3!*7!) = (10*9*8*7!)/(1*2*3*7!)=120 всего вынуть три жетона из десяти
С₄² * С₆¹ = (4!/(2!*2!))*(6!/(1*5!)) = ((4*3*2)/(2*2))*((6*5!)/5!)) = 36 всего вынуть два желтых и один зеленый жетон.
С₆² * С₄¹ = (6!/(2!*4!))*(4!/3!) = ((6*5*4!)/(2*4!))*(4*3!/3!) = 60 всего вынуть два зеленых жетона и один желтый
36 + 60 = 96 всего благоприятных дающих нужный результат).
Р(1 др.) = 96/120 = 8/10 = 0,8 вероятность появления жетона другого цвета в наборе из трех вынутых .
ответ:0,8
Раскрываем скобки и подводим подобные слагаемые:
6х^2 - 3х + 8х - 4 - 6x^2 = 16;
5х - 4 = 16;
5х = 16 + 4;
5х = 20;
х = 20/5 = 4.
2) (1 - 2y)(1 - 3y) = (6y - 1)y - 1.
Раскрываем скобки:
1 - 2у - 3у + 6у^2 = 6у^2 - у - 1;
1 - 5у + 6у^2 = 6у^2 - у - 1;
Перенесем буквенные одночлены в левую часть, а числовые - в правую:
-5у + 6у^2 - 6у^2 + у = -1 - 1;
-4У = -2;
У = (-2)/(-4) = 1/2 = 0,5.
3) 7 + 2x^2 = 2(x + 1)(x + 3).
Раскрываем скобки:
7 + 2x^2 = 2(x^2 + x + 3x + 3);
7 + 2x^2 = 2(x^2 + 4x + 3);
7 + 2x^2 = 2x^2 + 8х + 6;
перенесем буквенные одночлены в левую часть, а числовые - в правую:
2x^2 - 2x^2 - 8х = 6 - 7;
-8х = -1;
х = 1/8.
4) (y + 4)(y + 1) = y - (y - 2)(2 - y).
Раскрываем скобки и подводим подобные слагаемые:
y^2 + 4y + у + 4 = y - (2y - 4 - y^2 + 2у);
y^2 + 5у + 4 = y - (4y - 4 - y^2);
y^2 + 5у + 4 = y - 4y + 4 + y^2;
y^2 + 5у + 4 = -3y + 4 + y^2;
перенесем буквенные одночлены в левую часть уравнения, а числовые - в правую:
y^2 + 5у + 3y - y^2 = 4 - 4;
8у = 0;
у = 0.