Log(3)x+log(x)3-2,5≥0 перейдём к одному основанию 3 :log(x)3=1\log(3)x log(3)x+1\log(3)x-2,5≥0 приведём к общему знаменателю log²(3)x-2,5log(3)x+1≥0 ОДЗ:х>0 введём замену переменной , пусть log(3)x=t t²-2,5t+1≥0 умножим каждый член уравнения на 2 2t²-5t+2≥0 D=25-16=9 t1=1\2 t2=2 log(3)x=1\2 x=√3 log(3)x=2 x=9 на числовой прямой отметим точки √3 и 9 ( закрашенные , так как они принадлежат промежутку). Прямая разбивается на на 3 промежутка : (-∞;√3] [√3 ; 9] [9 ; ∞) положительное значение с учётом ОДЗ приобретает на промежутке х∈(0;√3] и [9;∞)
Область определения:
1-x^2 не = 0,
x не = 1, x не = -1
В числителях выносим за скобки общие множители
4x(2-x)/(1-x^2) + x(4-x^2)/(1+x) = 0
4x(2-x)/(1-x^2) + x(2-x)(2+x)/(1+x) = 0
Приводим к общему знаменателю (1-x^2) = (1-x)(1+x)
[4x(2-x) + x(2-x)(2+x)(1-x)] / (1-x^2) = 0
Выносим за скобки общие множители x(2-x)
x(2-x)(4 + (2+x)(1-x)) / (1-x^2) = 0
Если дробь = 0, то числитель = 0
x(2-x)(4 + (2+x)(1-x)) = 0
x1 = 0, x2 = 2
4 + 2 - x - x^2 = 0
x^2 + x - 6 = 0
(x + 3)(x - 2) = 0
x3 = -3, x4 = x2 = 2
x^2 + 9/x^2 + x - 3/x = 8
Замена x - 3/x = y, тогда y^2 = (x - 3/x)^2 = x^2 + 9/x^2 - 2*x*3/x = x^2 + 9/x^2 - 6
То есть x^2 + 9/x^2 = y^2 + 6
Получаем
y^2 + 6 + y = 8
y^2 + y - 2 = 0
(y + 2)(y - 1) = 0
1) x - 3/x = 1
x^2 - x - 3 = 0
D = 1 + 4*3 = 13
x1 = (1 - √13)/2; x2 = (1 + √13)/2
2) x - 3/x = -2
x^2 + 2x - 3 = 0
(x + 3)(x - 1) = 0
x3 = -3; x4 = 1
log(3)x+1\log(3)x-2,5≥0
приведём к общему знаменателю
log²(3)x-2,5log(3)x+1≥0 ОДЗ:х>0
введём замену переменной , пусть log(3)x=t
t²-2,5t+1≥0 умножим каждый член уравнения на 2
2t²-5t+2≥0 D=25-16=9 t1=1\2 t2=2
log(3)x=1\2
x=√3
log(3)x=2
x=9
на числовой прямой отметим точки √3 и 9 ( закрашенные , так как они принадлежат промежутку). Прямая разбивается на на 3 промежутка :
(-∞;√3] [√3 ; 9] [9 ; ∞)
положительное значение с учётом ОДЗ приобретает на промежутке х∈(0;√3] и [9;∞)