Пишу ход своих мыслей: Если скорость одного велосипедиста больше на 3 км/ч., но известно, что один велосипедист преодолевает этот путь на один час быстрее, тогда: 1) 36:4=9 км/ч - скорость велосипедиста преодолевшего путь на 1 час позже. 2) 9+3=12 км/ч -скорость велосипедиста преодолевшего путь на 1 час быстрее. 3) 36:12=3 ч. время велосипедиста преодолевшего путь на 1 час быстрее 4) 36:9=4 ч. время велосипедиста преодолевшего путь на 1 час позже ответ: 9 км/ч скорость первого велосипедиста, 12 км/ч скорость второго велосипедиста.
1)АМС=100 ВСМ=80 2)а) не знаю б) рассмотрим АВК ВК=12 АК=4 По т.Пифагора АВ=\/144+16=4\/40 (\/-это квадратный корень) S abk=1/2*4*12=24 S abcd=24*2+12*5=108 3)Предположим, что это так, значит тр. ВОС и тр. AOD подобны,значит ВО/ОD=СО/ОА, 6/12=5/15, 3=3, значит треугольники действительно подобны (по двум сторонам и углу между ними), значит 3*SВОС=SАОD из следствия подобия треугольников угол ВСО = углу ОАD, углы являются накрест лежащими при прямых ВC и AD, значит ВС// AD, следовательно по признаку AВCD- трапеция.
Т.к отношение площадей треугольников равно квадрату коэффициента подобия, то к=3,а SАОD /SВОС=3^2, т.е 9.
1) 36:4=9 км/ч - скорость велосипедиста преодолевшего путь на 1 час позже.
2) 9+3=12 км/ч -скорость велосипедиста преодолевшего путь на 1 час быстрее.
3) 36:12=3 ч. время велосипедиста преодолевшего путь на 1 час быстрее
4) 36:9=4 ч. время велосипедиста преодолевшего путь на 1 час позже
ответ: 9 км/ч скорость первого велосипедиста, 12 км/ч скорость второго велосипедиста.
ВСМ=80
2)а) не знаю
б) рассмотрим АВК ВК=12 АК=4
По т.Пифагора
АВ=\/144+16=4\/40 (\/-это квадратный корень)
S abk=1/2*4*12=24
S abcd=24*2+12*5=108
3)Предположим, что это так, значит тр. ВОС и тр. AOD подобны,значит ВО/ОD=СО/ОА, 6/12=5/15, 3=3, значит треугольники действительно подобны (по двум сторонам и углу между ними), значит 3*SВОС=SАОD из следствия подобия треугольников угол ВСО = углу ОАD, углы являются накрест лежащими при прямых ВC и AD, значит ВС// AD, следовательно по признаку AВCD- трапеция.
Т.к отношение площадей треугольников равно квадрату коэффициента подобия, то к=3,а SАОD /SВОС=3^2, т.е 9.