В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
plahowajana
plahowajana
20.11.2022 23:55 •  Алгебра

2.105. Запишите произведение в виде многочлена

Показать ответ
Ответ:
qwerty854
qwerty854
15.09.2021 16:35
Пусть х км/ч - это скорость, с которой ехал велосипедист из пункта А в пункт ВТак как длина путь из пункта А в пункт В = 27 километров.Тогда путь из пункста А в пункт В он проехал за 27/х(часов) - потому что на обратном пути велосипедист уменьшил скорость на 3км/ч, следовательно:х-3км/ч - скорость велосипедиста.(потому что обратный путь был короче на 7 километров), то есть он равен:27-7=20(км), следовательно:20/(х-3) часов - это он потратил на обратный путь.А по условию на обратный путь он затратил всего 10минут, а это 1/6 часа меньше.Составим уравнение:27/х-1/6=20/(х-3)Надо обе части умножить на 6х*(х-3) не равное нулю, тоесть х≠0 и х≠3(ЭТО НАМ НЕ ПОДХОДИТ)=>162*(х-3)-х*(х-3)=120х162х-486-х2+3х-120=0Теперь на всё это умножить на (-1) и привести конечно-же подобные слогаемые.х2-45х+486=0Всё получим мы через теорему Виета:х1+х2=45х1*х2=486х1=18х2=27 Либо через Дискриминант, то будет так.Дискриминант=(-45)2-4*2*486=2025+1944=3969х1,2=54(плюс/минус)63/4х1 = 18х2 = 27Здесь мы видим, что оба корня нам подходят.Итак велосипедист ехал со скоростью 18 км/ч или со скоростью 27 км/ч из пункта А в пункт В. 
ответ: 18км/ч, 27км/ч.
0,0(0 оценок)
Ответ:
Abdueva
Abdueva
07.09.2020 01:42

Простыми преобразованиями эту задачу не решить, будем использовать арифметику остатков.

1-ое свойство, которое понадобится

a+c \equiv b + d \ (mod \ m)

То есть мы спокойно можем заменить каждое слагаемое сравнимым с ним по модулю m. То есть каждое слагаемое в нашей сумме будем рассматривать отдельно.

2-ое свойство, которое нам понадобится:

ac \equiv bd \ (mod \ m)

То есть довольно аналогичная вещь в произведении

На нашем примере все увидим

a = 5\cdot 2^{51}+21\cdot 32^{45}

Находим остатки по модулю 31

Рассматриваем первое слагаемое. Просто двойка не годится, нам нужно найти ближайшее к 31 число, превосходящее его (иногда там в отрицательные числа залезаем, например, 16 \equiv (-1) \ (mod \ 17), но сейчас это не нужно), нам повезло, это 32

Учитываем, что 32 \equiv 1 \ (mod \ 31), получаем

5\cdot 2^{51} = 5\cdot 2^1 \cdot 2^{50}=10 \cdot 2^{10\cdot 5} = 10 \cdot (2^{5})^{10}= 10\cdot 32^{10} \equiv 10 \cdot 1^{10} \ (mod \ 31)

То есть остаток от деления первого слагаемое на 31 получился равным 10. Прекрасно, аналогично со вторым

21\cdot 32^{45} \equiv 21 \cdot 1^{45}\ (mod \ 31) \equiv 21 \ (mod \ 31)

Остаток 21, чудесно. Выполняем последний шаг.

5\cdot 2^{51}+21\cdot 32^{45} \equiv 10+21 \ (mod \ 31) \equiv 31 \ (mod \ 31) \equiv 0 \ (mod \ 31)

То есть остаток от деления исходного числа на 31 равен 0, следовательно, исходное число делится на 31, что и требовалось доказать.

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота