Упростите (cos(22°-α)-cos(18°+α))²+(cos(68°-α)+sin(72°-α))²
Объяснение: информация для размышления
sin(90 -α) =cosα ; cos(90-α) = sinα ; cos(α-β)=cosα*cosβ+sinα*sinβ
(A ± B)² =A²±2A*B +B)²
!?
1. (cos(22°-α) - cos(18°+α))²+(cos(68°- α)+sin(72°-α))² =
(cos(22°-α)- cos(18°+α))²+(cos(90° -(22°+α))+sin(90°-(18°+a))² =
(cos(22°-α)- cos(18°+α))²+(sin(22°+α)+cos(18°+a) )² =
cos²(22°-α)- 2cos(22°-α)*cos(18°+α)+cos²(18°+α) +
sin²(22°+α)+2sin(22°+α)*cos(18°+a)+ cos²(18°+a) =
!!
2. (cos(22°-α) - cos(18°+α))²+(cos(68°+ α)+cos(72°-α))² =
(cos(22°-α)- cos(18°+α))²+(cos(90° -(22°-α))+cos(90°-(18°+α))² =
(cos(22°-α)- cos(18°+α))²+(sin(22°-α)+sin(18°+α) )² =
cos²(22°-α)- 2cos(22°-α)*cos(18°+α)+ cos²(18°+α) +
sin²(22°-α)+2sin(22°- α)*sin(18°+α) + sin²(18°+α) =
( cos²(22°-α)+sin²(22°-α)) -2(cos(22°-α)*cos(18°+α)- sin(22°- α)*sin(18°+a) )+
( cos²(18°+α) +sin²(18°+a) ) =1 -2cos(22-α+18+α) +1 =2 -2cos40°=
2(1 -cos40°) =2*2sin²20° = 4sin²20 .
! ! !
3. (cos(32°-α) - cos(28°+α))²+(cos(58°+ α)+cos(62°-α))² =
(cos(32°-α)- cos(28°+α))²+(cos(90° -(32°-α))+cos(90°-(28°+α))² =
(cos(32°-α)- cos(28°+α))²+(sin(32°-α)+sin(28°+α) )² =
cos²(32°-α) - 2cos(32°-α)*cos(28°+α)+ cos²(28°+α) +
sin²(32°-α) + 2sin(32°- α)*sin(28°+α) + sin²(28°+α) =
( cos²(32°-α)+sin²(32°-α)) -2(cos(32°-α)*cos28°+α)- sin(32°- α)*sin(28°+a) )+
( cos²(28°+α) +sin²(18°+a) ) =1 -2cos(32-α+28+α) + 1 = 2 -2cos60°=
2-2*1/2= 1
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
2(1 -cos60°) =2*2sin²30° =4sin²30 = 4*(1/2)² =4*1/4 =1
Используем вид записи
a
cos
(
b
x
−
c
)
+
d
для поиска переменных, используемых для вычисления амплитуды, периода, сдвига по фазе и вертикального сдвига.
=
1
3
0
Найдем амплитуду
|
.
Амплитуда:
Определим период при формулы
2
π
Нажмите, чтобы увидеть больше шагов...
Период:
Найдем сдвиг периода при формулы
Фазовый сдвиг:
Найдем вертикальное смещение
Вертикальный сдвиг:
Перечислим свойства тригонометрической функции.
(на
вправо)
Выберем несколько точек для нанесения на график.
f
6
Тригонометрическую функцию можно изобразить на графике, опираясь на амплитуду, период, фазовый сдвиг, вертикальный сдвиг и точки.
Объяснение:
Упростите (cos(22°-α)-cos(18°+α))²+(cos(68°-α)+sin(72°-α))²
Объяснение: информация для размышления
sin(90 -α) =cosα ; cos(90-α) = sinα ; cos(α-β)=cosα*cosβ+sinα*sinβ
(A ± B)² =A²±2A*B +B)²
!?
1. (cos(22°-α) - cos(18°+α))²+(cos(68°- α)+sin(72°-α))² =
(cos(22°-α)- cos(18°+α))²+(cos(90° -(22°+α))+sin(90°-(18°+a))² =
(cos(22°-α)- cos(18°+α))²+(sin(22°+α)+cos(18°+a) )² =
cos²(22°-α)- 2cos(22°-α)*cos(18°+α)+cos²(18°+α) +
sin²(22°+α)+2sin(22°+α)*cos(18°+a)+ cos²(18°+a) =
!!
2. (cos(22°-α) - cos(18°+α))²+(cos(68°+ α)+cos(72°-α))² =
(cos(22°-α)- cos(18°+α))²+(cos(90° -(22°-α))+cos(90°-(18°+α))² =
(cos(22°-α)- cos(18°+α))²+(sin(22°-α)+sin(18°+α) )² =
cos²(22°-α)- 2cos(22°-α)*cos(18°+α)+ cos²(18°+α) +
sin²(22°-α)+2sin(22°- α)*sin(18°+α) + sin²(18°+α) =
( cos²(22°-α)+sin²(22°-α)) -2(cos(22°-α)*cos(18°+α)- sin(22°- α)*sin(18°+a) )+
( cos²(18°+α) +sin²(18°+a) ) =1 -2cos(22-α+18+α) +1 =2 -2cos40°=
2(1 -cos40°) =2*2sin²20° = 4sin²20 .
! ! !
3. (cos(32°-α) - cos(28°+α))²+(cos(58°+ α)+cos(62°-α))² =
(cos(32°-α)- cos(28°+α))²+(cos(90° -(32°-α))+cos(90°-(28°+α))² =
(cos(32°-α)- cos(28°+α))²+(sin(32°-α)+sin(28°+α) )² =
cos²(32°-α) - 2cos(32°-α)*cos(28°+α)+ cos²(28°+α) +
sin²(32°-α) + 2sin(32°- α)*sin(28°+α) + sin²(28°+α) =
( cos²(32°-α)+sin²(32°-α)) -2(cos(32°-α)*cos28°+α)- sin(32°- α)*sin(28°+a) )+
( cos²(28°+α) +sin²(18°+a) ) =1 -2cos(32-α+28+α) + 1 = 2 -2cos60°=
2-2*1/2= 1
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
2(1 -cos60°) =2*2sin²30° =4sin²30 = 4*(1/2)² =4*1/4 =1
Используем вид записи
a
cos
(
b
x
−
c
)
+
d
для поиска переменных, используемых для вычисления амплитуды, периода, сдвига по фазе и вертикального сдвига.
a
=
1
b
=
3
c
=
0
d
=
0
Найдем амплитуду
|
a
|
.
Амплитуда:
1
Определим период при формулы
2
π
|
b
|
.
Нажмите, чтобы увидеть больше шагов...
Период:
2
π
3
Найдем сдвиг периода при формулы
c
b
.
Нажмите, чтобы увидеть больше шагов...
Фазовый сдвиг:
0
Найдем вертикальное смещение
d
.
Вертикальный сдвиг:
0
Перечислим свойства тригонометрической функции.
Амплитуда:
1
Период:
2
π
3
Фазовый сдвиг:
0
(на
0
вправо)
Вертикальный сдвиг:
0
Выберем несколько точек для нанесения на график.
Нажмите, чтобы увидеть больше шагов...
x
f
(
x
)
0
1
π
6
0
π
3
−
1
π
2
0
2
π
3
1
Тригонометрическую функцию можно изобразить на графике, опираясь на амплитуду, период, фазовый сдвиг, вертикальный сдвиг и точки.
Амплитуда:
1
Период:
2
π
3
Фазовый сдвиг:
0
(на
0
вправо)
Вертикальный сдвиг:
0
x
f
(
x
)
0
1
π
6
0
π
3
−
1
π
2
0
2
π
3
1
Объяснение: