2.33. Составьте разность многочленов и упростите: 1) За и 7+2а; 4) Зm²+т и 1-т3m²; 2) 5b²-9 и 4b²-b+5; 5) 2а-3b и -b-а; 3) 4x+2 и х+1; 6) а²+а+1 и а²-а+1.
1) а) Число 54^135 , як і 54^3 , закінчується на 4.
Число 2^82 , як і 2^2, закінчується на 4
Отже, число закінчується на 4 + 4 = 8.
б) 2^100 , як і 2^4, закінчується на 6.
5) В нас система з 4 рівнять, що містить 5 невідомих, тому однозначного
розв'язку вона не має. Наприклад, якщо Х4 = 1, то Х3 = 3,6 , Х5 = 2,2 ,
Х1 = 7,4 - 3,6 - 2,2 = 1,6 , Х2 = 5,8 - 1,6 = 4,2
Якщо ж Х4 = 2, то Х3 = 2,6 , Х5 = 1,2 ,
Х1 = 7,4 - 2,6 - 1,2 = 3,6 , Х2 = 5,8 - 3,6 = 2,2
6) Якщо синові Х років, то батькові 5 * Х. Після закінчення батьком університету минуло 5 * Х - 22 роки, а синові до досягнення 22 років залишилося 22 - Х років. Отже отримуємо рівняння
5 * Х - 22 = (22 - Х) / 2
5?5 * X = 33
X = 33 / 5,5 = 6
Таким чином, сину 6 років, а батькові 5 * 6 = 30 років.
Разобьём квадрат со стороной 5 см на 25 квадратов со стороной 1 см. Будем рассматривать их как контейнеры. Точка попадает в контейнер, если она лежит либо на его сторонах, либо во внутренней области. Тогда, по принципу Дирихле, хотя бы в одном из контейнеров окажется две точки. [Некоторые точки могут попасть сразу в четыре контейнера (если такая точка упадёт на вершину квадрата, которая не лежит на стороне исходного квадрата), но для нас важно, что любая точка с необходимостью попадает хотя бы в один.] Итак, в одном из контейнеров содержится две точки. Вспомним, что наш контейнер не что иное, как квадрат со стороной в 1 см. Покажем, что расстояние между двумя точками квадрата со стороной в 1 см не превышает √2. Рассмотрим квадрат ABCD (рис.1) со стороной равной 1 см и две произвольные точки, которые лежат на квадрате.
1) а) Число 54^135 , як і 54^3 , закінчується на 4.
Число 2^82 , як і 2^2, закінчується на 4
Отже, число закінчується на 4 + 4 = 8.
б) 2^100 , як і 2^4, закінчується на 6.
5) В нас система з 4 рівнять, що містить 5 невідомих, тому однозначного
розв'язку вона не має. Наприклад, якщо Х4 = 1, то Х3 = 3,6 , Х5 = 2,2 ,
Х1 = 7,4 - 3,6 - 2,2 = 1,6 , Х2 = 5,8 - 1,6 = 4,2
Якщо ж Х4 = 2, то Х3 = 2,6 , Х5 = 1,2 ,
Х1 = 7,4 - 2,6 - 1,2 = 3,6 , Х2 = 5,8 - 3,6 = 2,2
6) Якщо синові Х років, то батькові 5 * Х. Після закінчення батьком університету минуло 5 * Х - 22 роки, а синові до досягнення 22 років залишилося 22 - Х років. Отже отримуємо рівняння
5 * Х - 22 = (22 - Х) / 2
5?5 * X = 33
X = 33 / 5,5 = 6
Таким чином, сину 6 років, а батькові 5 * 6 = 30 років.
Итак, в одном из контейнеров содержится две точки. Вспомним, что наш контейнер не что иное, как квадрат со стороной в 1 см.
Покажем, что расстояние между двумя точками квадрата со стороной в 1 см не превышает √2. Рассмотрим квадрат ABCD (рис.1) со стороной равной 1 см и две произвольные точки, которые лежат на квадрате.
Что и требовалось доказать.