Войти
Регистрация
Спроси ai-bota
В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Показать больше
Показать меньше
angelikasolnce
22.11.2021 14:03 •
Алгебра
2-3cos4x-sin2x=0 x принадлежит -pi/8; 5pi/8 включительно
Показать ответ
Ответ:
илюхаaaaa
03.10.2020 09:19
2 - 3cos4x -sin2x = 0 ; x ∈[-π/8 ; 5π/8 ] .
* * * cos2α=cos²α -sin²α = 1-sin²α -sin²α =1 -2sin²α * * *
* * * cos4x =cos2*(2x) = 1 -2sin²2x * * *
2 - 3(1-2sin²2x) -sin2x = 0 ;
6sin²2x -sin2x -1 = 0 ;
6t² -t -1 = 0 ; * * * D =1² -4*6*(-1) =25 =5² * * *
t₁= (1-5)/(2*6) = -1/3 ;
t₂= (1+5)/12 = 1/2.
а) sin2x=1/2 ;
[ 2x = π/6 +2πn ; 2x =(π -π/6) +2πn , n∈Z.
[ x = π/12 +πn ; x =5π/12+πn , n∈Z.
учитывая условия x ∈ [-π/8;5π/8 ] , получается [x = π/12 ; x=5π/12.
---
б) sin2x= -1/3⇔2x =(-1)^(n+1) arcsin(1/3)+πn, n∈Z.
[ x = -(1/2)arcsin(1/3) + πn ; x=(1/2)*(-π+arcsin(1/3)+πn, n∈Z;
ответ: -(1/2)arcsin(1/3) ; π/6 ; 5π/12 .
0,0
(0 оценок)
Популярные вопросы: Алгебра
anaw81
07.03.2023 21:10
Сократите и решите: -5•(2х+3)+4•(5х-2) заранее...
andrei271
07.03.2023 21:10
Найдите все целые значения n, при котором корень уравнения: 1) nx=-5 2) (n-6)x=25...
Gravetalia
07.03.2023 21:10
2корень из 3 сравнить с корнем из 11...
nargis84002
29.01.2020 07:18
5. знайти область визначення функції: тfix) = 49 – 196х2 + +...
ПУТИН222
03.11.2022 14:01
Решите графически неравенство -x^2+3x-2 0...
born380111
24.06.2022 05:52
Решите неравенство (x+1)^2 =x^2+2x-3...
sevasik12
12.08.2021 13:17
Вычислите, : {1}{16} )^{-\frac{3}{4} } +\sqrt{(-3)^{5} } -\frac{\sqrt[3]{152} }{4\sqrt[3]{19} } =[/tex]...
daqqwe
02.02.2020 11:49
Запишите одночлен в стандартном виде: а) 3a2bc 6abc; б) (-1)b2c3( - )b2c2.запишите многочлен в стандартном виде: а) а – 7а; б) 7a + b2 – 3a – 2b2; в) 3x – (2a – x).вынесите...
Mifka15
15.04.2021 20:49
Решить неравенство 15-x-x^2 0...
пушокс
05.07.2021 10:59
График какой функции изображён на рисунке? а) y=x^2 б) y=(x-2)^2. в) у=(х+2)^2. г) у=х^2-2. д) у=х^2+2...
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota
Оформи подписку
О НАС
О нас
Блог
Карьера
Условия пользования
Авторское право
Политика конфиденциальности
Политика использования файлов cookie
Предпочтения cookie-файлов
СООБЩЕСТВО
Сообщество
Для школ
Родителям
Кодекс чести
Правила сообщества
Insights
Стань помощником
ПОМОЩЬ
Зарегистрируйся
Центр помощи
Центр безопасности
Договор о конфиденциальности полученной информации
App
Начни делиться знаниями
Вход
Регистрация
Что ты хочешь узнать?
Спроси ai-бота
* * * cos2α=cos²α -sin²α = 1-sin²α -sin²α =1 -2sin²α * * *
* * * cos4x =cos2*(2x) = 1 -2sin²2x * * *
2 - 3(1-2sin²2x) -sin2x = 0 ;
6sin²2x -sin2x -1 = 0 ;
6t² -t -1 = 0 ; * * * D =1² -4*6*(-1) =25 =5² * * *
t₁= (1-5)/(2*6) = -1/3 ;
t₂= (1+5)/12 = 1/2.
а) sin2x=1/2 ;
[ 2x = π/6 +2πn ; 2x =(π -π/6) +2πn , n∈Z.
[ x = π/12 +πn ; x =5π/12+πn , n∈Z.
учитывая условия x ∈ [-π/8;5π/8 ] , получается [x = π/12 ; x=5π/12.
---
б) sin2x= -1/3⇔2x =(-1)^(n+1) arcsin(1/3)+πn, n∈Z.
[ x = -(1/2)arcsin(1/3) + πn ; x=(1/2)*(-π+arcsin(1/3)+πn, n∈Z;
ответ: -(1/2)arcsin(1/3) ; π/6 ; 5π/12 .