Такие уравнения решаются по одному приёму: надо снять знак модуля. При этом учитывать, что |x| = x при х ≥ 0 |x| = -x при х <0 Придётся определять какое число стоит под знаком модуля, чтобы потом этот самый знак снять. каждое подмодульное выражение = 0 при х = -2, 3, 2 Поставим эти числа на координатной прямой -∞ -2 2 3 +∞ Получили 4 промежутка. на каждом отдельно будет уравнение иметь свой вид а) (-∞; -2) -(х+2) +(х-3) +(х-2) = 3 -х-2+х-3+х-2 = 3 х = 10 ( в указанный промежуток не входит) б)[-2; 2) х+2 +х -3 +х-2 = 3 3х = 6 х = 2 ( в указанный промежуток не входит) в) [2; 3) х +2 +х -3 -х -2 = 3 х =6 ( в указанный промежуток не входит) г)[3; +∞) х +2 -х+3 -х+2 = 3 -х = -4 х = 4 ( в указанный промежуток входит) ответ: 4
(Х + 1) (x - 1) / (Х - 2)(x - 1) = (x² - 1) / (Х - 2)(x - 1) = (x² - 1) / (x² - 3x + 2)
2) (Х - 3) (x - 3)/ (Х + 3)(x - 3) = (x - 3)² / (x² - 9)
Х*(x + 3) / (Х - 3)(x + 3) = x*(x + 3) / (x² - 9)
3) (3 + Х)(x - 3) / (Х - 5)(x - 3) = (x² - 9) / (Х - 5)(x - 3) = (x² - 9) / (x² - 8x + 15)
Х*(x - 5) / (Х - 3)(x - 5) = Х*(x - 5) / (x² - 8x + 15)
4) (Х + 1)(x + 2) /x*(x² - 4) = (x² + 3x + 2) /x*(x² - 4)
x (4 + Х) / x( x² - 4)
|x| = -x при х <0
Придётся определять какое число стоит под знаком модуля, чтобы потом этот самый знак снять.
каждое подмодульное выражение = 0 при х = -2, 3, 2
Поставим эти числа на координатной прямой
-∞ -2 2 3 +∞
Получили 4 промежутка. на каждом отдельно будет уравнение иметь свой вид
а) (-∞; -2)
-(х+2) +(х-3) +(х-2) = 3
-х-2+х-3+х-2 = 3
х = 10 ( в указанный промежуток не входит)
б)[-2; 2)
х+2 +х -3 +х-2 = 3
3х = 6
х = 2 ( в указанный промежуток не входит)
в) [2; 3)
х +2 +х -3 -х -2 = 3
х =6 ( в указанный промежуток не входит)
г)[3; +∞)
х +2 -х+3 -х+2 = 3
-х = -4
х = 4 ( в указанный промежуток входит)
ответ: 4