2) (3x + 2)(x + 1) 4) (dc + c ² )(c - 1) 2) (y+3)(y+1)
4) (x + 2)(y - 1)
6) (a + x)(a - y)
8) (a - b)(- a - b)
2) (y² + c)(y² + 3c)
4) (2a + b²)(2b - a²)
6) (b + 2a)(b - 2a)
2) (y + 3)(y² - 3y - 3)
4) (y² + c)(y + 3c + c²)
2) (y+2)(y² -2y+4)
4) (c - d²)(c²+ cd² + d⁴)
Примем всё задание за 1
х дней - время выполнения всего задания первым рабочим
у дней - время выполнения всего задания вторым рабочим
1/х - производительность первого рабочего
1/у - производительность второго рабочего
1/х + 1/у = (х + у)/ху - производительность совместная обоих рабочих
Составляем два уравнения для системы
1 : (х + у)/ху = 12
ху/(х + у) = 12 - первое уравнение
составляем второе уравнение
1/2 : 1/х + 1/2 : 1/у = 25
х/2 + у/2 = 25
х + у = 50 - второе уравнение
Получаем систему
ху/(х + у) = 12
х + у = 50
Второе подставим в первое вместо знаменателя
ху/50 = 12
ху = 600
у = 600/х
Подставим у = 600/х во второе уравнение
х + 600/х = 50
х² - 50х + 600 = 0
х₁ = 20
х₂ = 30
у₁ = 30
у₂ = 20
Взаимозаменяемы
ответ за 20 дней первый выполнит, за 30 дней - второй.
А когда косинус 2х равен нулю? Это когда 2х равно пи/2 + пи*n
Следовательно х в твоём случае не может быть равен пи/4 + пи/2*n
(где n - ну ты понял, любое целое число).
Итого, ответ: y=tg(2x) возрастает на всём множестве х, за исключением точек х = пи/4 + пи/2*n, потому что в этих точках данная функция не существует - то есть имеет разрыв.