Пусть стороны прямоугольника равны x, y. Тогда по условию задачи x*y=120. По теореме Пифагора из прямоугольного треугольника, образованного двумя сторонами прямоугольника и его диагональю, получаем, что x^2+y^2=17^2. Получили систему двух уравнений с двумя неизвестными.
x*y=120
x^2+y^2=17^2
Из первого уравнения x=120/y, подставляем во второе уравнение, получаем
(120/y)^2+y^2= 289,
y^4-289y^2+14400=0 биквадратное уравнение
y^2=t, t^2-289t+14400=0
t1= 225, t2=64
тогда
1)y^2=t1 2)y^2=t2
y^2=225 y^2=64
y1=15 y3=8
y2=-15 y4=-8
очевидно, что y2 и y4 не удовлетворяют условие задачи (стороны не могут быть отрицательные)
перепишем уравнение в виде
cos 2x sin x=1
так как для любого х, область значений синуса и косинуса не превышает 1, и не меньше -1, то данное уравнение равносильно двум системам уравнений
первая: cos 2x=1
sin x=1
2x=2*pi*k, где k - целое
x=pi/2+2*pi*l, где l - целое
x=pi*k, где k - целое
x=pi/2+2*pi*l, где l - целое
первая система решений не имеет
вторая:
cos 2x=-1
sin x=-1
2x=pi+2*pi*k, где k - целое
x=-pi/2+2*pi*l, где l - целое
x=pi/2+pi*k, где k - целое
x=-pi/2+2*pi*l, где l - целое
решение второй системы множество корней -pi/2+2*pi*l, где l - целое
обьединяя
ответ: -pi/2+2*pi*l, где l - целое
Пусть стороны прямоугольника равны x, y. Тогда по условию задачи x*y=120. По теореме Пифагора из прямоугольного треугольника, образованного двумя сторонами прямоугольника и его диагональю, получаем, что x^2+y^2=17^2. Получили систему двух уравнений с двумя неизвестными.
x*y=120
x^2+y^2=17^2
Из первого уравнения x=120/y, подставляем во второе уравнение, получаем
(120/y)^2+y^2= 289,
y^4-289y^2+14400=0 биквадратное уравнение
y^2=t, t^2-289t+14400=0
t1= 225, t2=64
тогда
1)y^2=t1 2)y^2=t2
y^2=225 y^2=64
y1=15 y3=8
y2=-15 y4=-8
очевидно, что y2 и y4 не удовлетворяют условие задачи (стороны не могут быть отрицательные)
Тогда x1=120/y1= 120/15=8
x3=120/y3=120/8=15
ответ: 15 см и 8 см или 8 см и 15 см.