1) Складывая уравнения системы, получаем уравнение 2x²=32, откуда x²=16. Тогда из первого уравнения находим 2y²=2 и y²=1. Если x²=16, то x1=4, x2=-4 Если y²=1, то y1=1, y2=-1. Решением уравнения явлаются пары (x1;y1), (x1;y2), (x2,y1), (x2;y2). ответ: (4;1), (4;-1), (-4;1), (-4;-1)
2) Из первого уравнения находим 6/(x-y)=8/(x+y)-2. Тогда 9/(x-y)=12/(x+y)-3. Подставляя это выражение во второе уравнение, получаем 22/(x+y)=11, откуда x+y=22/11=2. Теперь из первого уравнения находим 6/(x-y)-8/2=-2, откуда 6/(x-y)=2 и x-y=6/2=3. Получили систему уравнений:
x+y=2 x-y=3.
Из первого уравнения находим y=2-x. Подставляя это выражение во второе уравнение, получаем 2x-2=3, 2x=5, x=2,5. Тогда y=-0,5. ответ: (2,5;-0,5)
0,15 (x - 4) = 9,9 - 0,3 (x - 1)
0,15x - 0,6 = 9,9 - 0,3x + 0,3
0,15x + 0,3x = 9,9 + 0,3 + 0,6
0,45x = 10,8
x = 10,8 : 0,45 = 1080 : 45 = 24
Проверка :
0,15 (24 - 4) = 9,9 - 0,3 (24 - 1)
0,15 · 20 = 9,9 - 0,3 · 23
3 = 9,9 - 6,9 = 3
-----------------------------------------------
1,6 (a - 4) - 0,6 = 3 (0,4a - 7)
1,6a - 6,4 - 0,6 = 1,2a - 21
1,6a - 1,2a = 6,4 + 0,6 - 21
0,4a = -14
a = -14 : 0,4 = - 140 : 4 = -35
Проверка :
1,6 (- 35 - 4) - 0,6 = 3 (0,4 · (-35) - 7)
1,6 · (-39) - 0,6 = 3 · (-14 - 7)
-62,4 - 0,6 = 3 · (-21)
-63 = -63
ответ: (4;1), (4;-1), (-4;1), (-4;-1)
2) Из первого уравнения находим 6/(x-y)=8/(x+y)-2. Тогда 9/(x-y)=12/(x+y)-3. Подставляя это выражение во второе уравнение, получаем 22/(x+y)=11, откуда x+y=22/11=2. Теперь из первого уравнения находим 6/(x-y)-8/2=-2, откуда 6/(x-y)=2 и x-y=6/2=3. Получили систему уравнений:
x+y=2
x-y=3.
Из первого уравнения находим y=2-x. Подставляя это выражение во второе уравнение, получаем 2x-2=3, 2x=5, x=2,5. Тогда y=-0,5.
ответ: (2,5;-0,5)