Итак у нас три дроби : первая : 3а/(а-4) вторая : (а+2) / (2а-8) третья : 96 / (а² + 2а) теперь порядок решения : 1)сначала умножение дробей ( вторую дробь не переворачиваем, т.к. это умножение) 2) вычитание дробей *при умножении дроби к общему знаменателю не приводят. *при умножении дробей, под общей чертой, можно сокращать (делить друг на друга) числа числителя и знаменателя. и так умножает 2-ую и 3-ью дроби получаем: (а+2) * 96 (а+2) * 96 1) = (2а-8) * (а²+2а) 2* (а-4) * а* (а+2) ↑ 2а-8 = как 2* (а-4) ↑ а²+2а = как а* (а+2) 2) и так, у нас в числителе и в знаменателе стоят знаки " * " поэтому мы можем сокращать числа : 96/2 = 48 (а+2)/(а+2) = 1 48 3) получаем дробь : а* (а-4) 1) теперь будем вычитать дроби : из 1-ой - полученную : 3а 48 - при вычитании (сложении) знаменатели должны (а-4) а * (а-4) быть одинаковыми, а у нас сейчас они разные 1) приводим дроби к общему знаменателю : домножаем первую дробь на " а ", при этом умножаем и числитель и знаменатель на " а " 2) получаем дробь (3а*а)/ а* (а-4) и вычитаем : 3а² * 48 3*а*48 144а = = сократить не можем ,т.к. знак минус в а * (а-4) а-4 а-4 знаменателе
3/8
Объяснение:
Поскольку числитель на 5 меньше знаменателя, дробь имеет вид
x-5--. x
Если числитель этой дроби уменьшить на 2, а знаменатель увеличить на 16, то получится дробь
x-7--. x+16
Получаем уравнение
x-5 x-7 1 - - = - - + -. xx+16 3
Домножив обе части этого равенства на 3x (x+16) и преобразовав, получаем квадратное уравнение:
3 (x-5) (x+16) = 3 (x-7) x+x (x+16),
3 (x²+11x-90) = 3x²-21x+x²+16x,
x²-38x+240=0.
Дискриминант D=38²-4·240=484=22², корни x = (38±22) / 2=30 и 8. Этим корням соответствуют две дроби
25 3 - и -.30 8
Первая сократимая, вторая несократимая.