Скорость теплохода в неподвижной воде - это собственная скорость теплохода . Обозначим её через x . Тогда скорость теплохода по течению равна (x + 4) км/ч , а скорость теплохода против течения равна :
(x - 4) км/ч .
По течению реки теплоход проходит 609 км и на обратном пути проходит такое же расстояние, значит на путь по течению он затрачивает :
часа , а не путь против течения часа
В пункт отправления теплоход возвращается через 58 часов после отплытия из него , причём стоянка длилась 8 часов , значит по течению и против течения теплоход плыл 58 - 8 = 50 часов .
Составим и решим уравнение :
ответ : Cкорость теплохода в неподвижной воде равна 25 км/ч .
1)
2 sin²x - sin x = 0
sin x (2sin x - 1) = 0
a) sin x = 0
x₁ = π/2 + πn (n ∈ Z) x₁ = π/2; 3π/2; 5π/2; ...
b) 2sin x - 1 = 0 sin x = 0.5
x₂ = π/6 + 2 πk (k ∈ Z) x₂ = π/6; 13π/6; 25π/6; ...
x₃ = 5π/6 + 2 πm (m ∈ Z) x₃ = 5π/6; 17π/6; ...
В промежутке {0; 5π/6] уравнение имеет три корня: π/6; π/2: 5π/6
Можно написать что промежуток этот {0; π]
2)
2 cos²x - √3 cos x = 0
cos x · (2cos x - √3) = 0
a) cos x = 0
x₁ = πn (n ∈ Z) x₁ = 0; π; 2π; ...
2cos x - √3 = 0
cos x = 0.5 √3
x₂ = π/6 + 2πk (k ∈ Z) x₂ = π/6; 13π/6; 25π/6; ...
x₃ = - π/6 + 2πm (m ∈ Z) x₃ = -π/6; 11π/6; 23π/6; ...
В промежутке {0; π] уравнение имеет три корня: 0; π/6; π
Скорость теплохода в неподвижной воде - это собственная скорость теплохода . Обозначим её через x . Тогда скорость теплохода по течению равна (x + 4) км/ч , а скорость теплохода против течения равна :
(x - 4) км/ч .
По течению реки теплоход проходит 609 км и на обратном пути проходит такое же расстояние, значит на путь по течению он затрачивает :
часа , а не путь против течения часа
В пункт отправления теплоход возвращается через 58 часов после отплытия из него , причём стоянка длилась 8 часов , значит по течению и против течения теплоход плыл 58 - 8 = 50 часов .
Составим и решим уравнение :
ответ : Cкорость теплохода в неподвижной воде равна 25 км/ч .