(Х+15) км/ч - время на второй части пути; (24/х) ч-скорость на первой части пути; (36/(x+15)) ч - скорость на второй части пути; 4 км/ч - разница между первой и второй скоростью Составляем и решаем уравнение: 36/(x+15)-24/x=4 Находим общий знаменатель, подписываем дополнительные множители, приводим к квадратному. (-4x^2-24x+384=0) Находим корни уравнения: x1=6; x2=-16 (не удовлетворяет условию) х-время на первой части пути, значит, время на первой части пути = 6 ч.
х²-5х +6 = х² -2х -3х+2*3 =x(x-2) -3 (x-2) = (x-3)(x-2)
2) Можно решить через дискриминант:
х² -5х+6=0
a= 1 , b= -5, с= 6
D= b² -4ac
D= (-5)² - 4*1*6= 25 - 24 = 1 ; √D= 1
D>0 - два корня уравнения
x1;х2 = (-b (+)(-) √D) / 2a
x1 = (5-1) /2 = 4/2 =2
x2= (5+1) /2 =6/2=3
аx² -bx +c = a(x-x1)(x-x2)
x²-5х+6 = 1(х-2)(х-3) =(х-2)(х-3)
1) x²+11x +24 = x²+8x+3x+ 3*8= x(x+8) +3(x+8) = (x+8)(x+3)
2)
х²+11х+24=0
D= 11²-4*1*24= 121-96= 25 ; √D= 5
x1= (-11 -5)/2 = -16/2= -8
x2 = (-11+5) /2 = -6/2 = -3
x²+11x+24= (x- (-8) ) (x-(-3) = (x+8)(x+3)
(Х) км/ч-время на первой части пути;
(Х+15) км/ч - время на второй части пути;
(24/х) ч-скорость на первой части пути;
(36/(x+15)) ч - скорость на второй части пути;
4 км/ч - разница между первой и второй скоростью
Составляем и решаем уравнение:
36/(x+15)-24/x=4
Находим общий знаменатель, подписываем дополнительные множители, приводим к квадратному. (-4x^2-24x+384=0)
Находим корни уравнения: x1=6; x2=-16 (не удовлетворяет условию)
х-время на первой части пути, значит, время на первой части пути = 6 ч.
Находим скорость: 24/6=4
ответ: 4 км/ч