2) Для каждого из уравнений подобрать корень из данных чисел: а) 2х+4=6 б) х-4=0 в) (х+1)(4+х)=0 г) 2(х-1)=х+4
Числа: 6; 2; 1; -1; -2; -4
3)Составьте уравнение, корнем которого является число 8
4) Выберите правильный ответ.
Уравнение х+5=5:
имеет множество корней;не имеет корней;имеет только один корень. Уравнение х+3=х:
а) имеет множество корней;
б) не имеет корней;
в) имеет только один корень 5) Найдите числа, которые нужно записать в квадратики, чтобы получилось верное равенство. 5 + □ = 13,5 - □=13,5 * □ = 15,13 = □ - 5,20 : □ = 5,5 = □ : 20,3 * □ – 5 = 10,15 – 2 * □ = 5,II. Восприятие и осознание нового материала. Рассмотрим два уравнения: х+5=7 и х-1=1 .Решением каждого из этих уравнений есть число 2 (х=2).Такие уравнения называются равносильными. Два уравнения называются равносильными, если они имеют одинаковые решения. Равносильными считаются и уравнения, не имеющие корней, например х+5=х и х-8=х. Вопрос классу : являются ли равносильными уравнения: а) х – 3= 0 и 3х =9; б) 0х = 3 и х+6=х? Какие из уравнений равносильны уравнению 3х=15: а) 6х=30; б)9х=45; в)3х-15=0; г)3х-1=14; д)3х+15=20; е)3х+15=18?
Чтобы решать более сложные уравнения, следует научиться заменять их более простыми уравнениями и равносильными данным.
Например, используя распределительное свойство умножения а(в+с)=ав+ас, можно утверждать, что значения выражений 5х+3х и 8х при любом значении х равны. Следовательно, равносильны такие уравнения: 5х+3х=10 и 8х=10.Другимим словами, если раскрыть скобки и привести подобные слагаемые в любой части уравнения, то получим уравнение равносильное данному.
Кроме того, если к обеим частям верного равенства прибавить одно и тоже число, то получится верное равенство. Например, если к обеим частям уравнения 3х=12-2х прибавить 2х, то получим уравнение 3х+2х=12 равносильное данному. Это все равно, что перенести члены уравнения из одной части в другую, при этом изменивши знак.
Мы также знаем, что если обе части числового равенства умножить или разделить на одно и тоже, отличное от нуля, число, то получим верное равенство. Поэтому, если обе части уравнения умножить или разделить на одно и то же , отличное от нуля, число, то получим уравнение равносильное данному.
Например, -3х+7=5, умножим обе части на (-1), получим 3х-7=-5. Эти уравнения имеют одни и те же корни.
Таким образом, всегда справедливы такие свойства уравнений.
Основные свойства уравнений :
1. В любой части уравнения можно привести подобныеслагаемые или раскрыть скобки, если они есть.
2.Любой член уравнения можно переносить из одной части уравнения в другую, изменивши его знак на противоположный. 3.Обе части уравнения можно умножать и делить на одно и то же число, отличное от нуля. Рассмотреть решение следующих уравнений с объяснением учителя: 3(х-1)=12; 2х-3=3х+2; . III. Закрепление и осознание знаний учащихся
1)Являются ли равносильными уравнения: а) 2х+5=10 и 2х=10; б)6-х=5 и х=11; 6х-1=2х+3 и 4х=4(ответ объяснить)
60/х -время,потраченное на путь из А в В
обратный путь
1 ч ехал со скоростью х км/ч,значит
х(км)-путь,которые проехал за 1 час
60-х -осталось проехать
х+4 км/ч - скорость
(60-х)/(х+4) -время движения со скоростью х+4 км/ч
20 мин=1/3 ч-остановка
всего на обратный путь он потратил
1 + 1/3 +(60-х)/(х+4)
составим уравнение
1 1/3+(60-х)/(х+4)=60/х умножим на 3х(х+4)
4х(х+4)+3х(60-х)=180(х+4)
4х²+16х+180х-3х²-180х-720=0
х²+16х-720=0
D=16²+4*720=3 136
√D=56
x1=(-16-56)/2=-36 км/ч не подходит
x2=(-16+56)/2=20 (км/ч) -искомая скорость
ответ:20 км/ч.
(4x² - 4xy + y²) + (x² +4x + 4) =0
(2x - y)² +(x + 2)² =0
(2x - y)² = -(x + 2)²
Заметим, что -(x + 2)² всегда имеет отрицательное значение, но (2x - y)² всегда больше или равен 0. Значит условие выполняется только тогда, когда левая и правая части равны 0.
Получим систему уравнений:
1)-(x + 2)² =0
2)(2x - y)² = 0
1. -(x + 2)² =0
(x + 2)(x + 2) = 0 откуда видно, что x = -2
2. (2x - y)² = 0
Подставляем наш x и получаем
(-4 - y)² = 0
(-4 - y)(-4 - y) = 0
А значит y = -4
Тогда ответ: x=-2, y=-4