В первую очередь определяем область допустимых значений: поскольку данное выражение - многочлен, то ОДЗ=R, т.е. x - любое число. Понятие "экстремумы" связано с нахождением производной, поэтому первый шаг выглядит следующим образом: 2) y' = (3x^3-x^2+5)'=9x^2-2x Второй шаг: приравниваем производную к нулю: 3) 9x^2-2x=0 x(9x-2)=0 x=0; 9x-2=0, x=2/9 4) Полученные точки отмечаем на числовой прямой: ___+__.-.+__y'_ 0 2/9 y x причем над прямой отмечается знак производной, под прямой - поведение функции. Поскольку наша производная - это квадратное уравнение, то графиком производной является парабола, ветви которой направлены вверх, следовательно знаки производной отмечаются справа на лево + - +. Значит до точки 0 функция возрастает, до очки 2/9 убывает, после точки 2/9 снова возрастает. следовательно, точка 0 - икс максимальное, точка 2/9 - икс минимальное. 5) Точки экстремума - это иксы, а экстремумы это игрики. Чтобы найти игрики, надо иксы подставить в ваше исходное выражение y=3x^3-x^2=5 и решить, причем у минимальное - это игрик от нуля, а у максимальное - это игрик от двух девятых. Удачи вам) Надеюсь мой ответ вам
Нет желания расписывать тут полчаса. Все решения на прикреплённой фотке.
Возникли проблемы с заданием 1 - б и 6 - б. Возможно я что-то не так понял или ты написал непонятно либо неправильно.
Тут для решения нужно знать следующие фишки:
1) Если мы возводим число в какой-либо степени в степень, то нужно просто перемножить степени (пример 3 - в)
2) Если перемножаем (делим) числа в n степени с одинаковым основанием, то тогда мы просто переписываем основания и складываем (вычитаем) степени (пример 2 -а и 2-б)
В целом, 2-ое задание показывает необходимые операции на степенными числами.
к 3 заданию: стандартный вид числа выглядит примерно так "x.xxx*10^n". Т.е. 1 знак до запятой, какое-либо число знаков после запятой и умножаем всё это на 10 в нужной степени. Проанализируй 3 задание и поймёшь.
Понятие "экстремумы" связано с нахождением производной, поэтому первый шаг выглядит следующим образом:
2) y' = (3x^3-x^2+5)'=9x^2-2x
Второй шаг: приравниваем производную к нулю:
3) 9x^2-2x=0
x(9x-2)=0
x=0;
9x-2=0, x=2/9
4) Полученные точки отмечаем на числовой прямой:
___+__.-.+__y'_
0 2/9 y x
причем над прямой отмечается знак производной, под прямой - поведение функции.
Поскольку наша производная - это квадратное уравнение, то графиком производной является парабола, ветви которой направлены вверх, следовательно знаки производной отмечаются справа на лево + - +.
Значит до точки 0 функция возрастает, до очки 2/9 убывает, после точки 2/9 снова возрастает. следовательно, точка 0 - икс максимальное, точка 2/9 - икс минимальное.
5) Точки экстремума - это иксы, а экстремумы это игрики.
Чтобы найти игрики, надо иксы подставить в ваше исходное выражение y=3x^3-x^2=5 и решить, причем у минимальное - это игрик от нуля, а у максимальное - это игрик от двух девятых.
Удачи вам) Надеюсь мой ответ вам
Нет желания расписывать тут полчаса. Все решения на прикреплённой фотке.
Возникли проблемы с заданием 1 - б и 6 - б. Возможно я что-то не так понял или ты написал непонятно либо неправильно.
Тут для решения нужно знать следующие фишки:
1) Если мы возводим число в какой-либо степени в степень, то нужно просто перемножить степени (пример 3 - в)
2) Если перемножаем (делим) числа в n степени с одинаковым основанием, то тогда мы просто переписываем основания и складываем (вычитаем) степени (пример 2 -а и 2-б)
В целом, 2-ое задание показывает необходимые операции на степенными числами.
к 3 заданию: стандартный вид числа выглядит примерно так "x.xxx*10^n". Т.е. 1 знак до запятой, какое-либо число знаков после запятой и умножаем всё это на 10 в нужной степени. Проанализируй 3 задание и поймёшь.
Удачи)