2.известно, что 43.решить неравенство: 1) 3/8 x < -3/4; 2) 7x-4 > 6(3x-2)
4.решить систему неравенств: 1) 8x – 32 < 0
-3х+15> 0
2) 6х-15< 13
28+4х> 20
5.найдите целые решения системы неравенств: 4( 5x -4) > 13(x-1) +18
6.при каких значениях переменной имеет смысл выражение 4х+16 + 1/6--зх ?
Разложим оба числа на простые множители.
255=5*51=5*3*17
510 = 2*5*3*17
Для НОД (наибольший общий делитель) берем все множители, которые встречаются в обоих числах, наименьшее число раз.
НОД = 5*3*17 = 255
Действительно, наибольшее число, на которые делятся оба данные числа - это 255
Для НОК (наименьшее общее кратное) берем все разные множители, которые встречаются хотя бы в 1 числе, наибольшее число раз
НОК = 2*5*3*17 = 510
Действительно, наименьшее число, которое делится на оба эти числа, это 510
y = - x² - 2x + 3
1) Область определения – множество значений х при которых функция имеет смысл.
Область определения D(f) = ( -oo ; + oo)
т.к. нет ограничений (нет деления на переменную, нет корней и т.д.)
Заметим что графиком будет парабола
Старший коэффициент отрицательный => ветви параболы направлены вниз.
2) Найдем координаты вершины:
Найдем значение функции в вершине
Вершина ( -1 ; 4)
Итак Вершина в точке (-1;4) и ветви вниз, значит это наибольшее значение. Теперь легко определить Область значений
Значит область значений E(f) = (-oo; 4]
3) Промежутки возрастания, убывания:
f(х) возрастает на ( -оо ; - 1 )
f(х) убывает на ( - 1 ; +оо)
4) Нули функции:
- x² - 2x + 3 = 0
x² + 2x - 3 = 0
По теореме Виета
x1+х2 = -2,
x1х2 = -3
x1 = -3
х2 =1
+
_________-3__________________1_________________ - -
5) Промежутки знакопостоянства:
f(х) > 0 при х∈ ( -3 ; 1)
f(х) < 0 при х∈ ( - oo ; -3) ∪ ( 1 ; +оо )
6) Точка пересечения с осью OY ( 0; 3)
Также можно проводить исследование функции с производной.
но это уже другая тема.