Пусть х км/ч - скорость катера, то (х-2) км/ч скорость катера против течения, а (х+2) скорость катера по течению, значит время затраченное по реке: 15/х-2 + 6/х+2, а оно равно времени по озеру: 22/х
Составим уравнение:
15/х-2+6/х+2=22/х (каждое слагаемое умножим на "х(х-2)(х+2)
15х(х+2)+6х(х-2)=22х^2-88
15х^2+30x+6x^2-12x-22x^2+88=0
-x^2+18x+88=0
x^2-18x-88=0
Д= b^2-4ac= (-18)^2 - 4(1)(-88)= 676
x1= -b+-Корень из Дискриминанта / 2а = 18+26/2=22;
х2= 18-26/2=-4 Посторонний корень, т.к. скорость не может быть отрицательной.
Y = x³ - 6x² - 15x - 2 1. Находим интервалы возрастания и убывания. Первая производная. f'(x) = 3x² - 12x - 15 Находим нули функции. Для этого приравниваем производную к нулю 3x² - 12x - 15 = 0 Откуда: x₁ = -1 x₂ = 5 (-∞ ;-1) f'(x) > 0 функция возрастает (-1; 5) f'(x) < 0 функция убывает (5; +∞) f'(x) > 0 функция возрастает В окрестности точки x = -1 производная функции меняет знак с (+) на (-). Следовательно, точка x = -1 - точка максимума. В окрестности точки x = 5 производная функции меняет знак с (-) на (+). Следовательно, точка x = 5 - точка минимума.
Пусть х км/ч - скорость катера, то (х-2) км/ч скорость катера против течения, а (х+2) скорость катера по течению, значит время затраченное по реке: 15/х-2 + 6/х+2, а оно равно времени по озеру: 22/х
Составим уравнение:
15/х-2+6/х+2=22/х (каждое слагаемое умножим на "х(х-2)(х+2)
15х(х+2)+6х(х-2)=22х^2-88
15х^2+30x+6x^2-12x-22x^2+88=0
-x^2+18x+88=0
x^2-18x-88=0
Д= b^2-4ac= (-18)^2 - 4(1)(-88)= 676
x1= -b+-Корень из Дискриминанта / 2а = 18+26/2=22;
х2= 18-26/2=-4 Посторонний корень, т.к. скорость не может быть отрицательной.
ответ: 22 км/ч
1. Находим интервалы возрастания и убывания. Первая производная.
f'(x) = 3x² - 12x - 15
Находим нули функции. Для этого приравниваем производную к нулю
3x² - 12x - 15 = 0
Откуда:
x₁ = -1
x₂ = 5
(-∞ ;-1) f'(x) > 0 функция возрастает
(-1; 5) f'(x) < 0 функция убывает
(5; +∞) f'(x) > 0 функция возрастает
В окрестности точки x = -1 производная функции меняет знак с (+) на (-). Следовательно, точка x = -1 - точка максимума.
В окрестности точки x = 5 производная функции меняет знак с (-) на (+). Следовательно, точка x = 5 - точка минимума.