2. Луч MN – биссектриса угла М. На сторонах ула отложены равные отрезки МВ. Запишите разные элементы треугольников MAN и MSN и определите по акоrу признаку треугольники разны. 3. В равнобедренном треугольнике Ас с основанием AC yos BDC
1) дуга, ограниченная сторонами угла, являющаяся частью окружности с центром в вершине угла и радиусом 3 см
2) центр описанной около данного треугольника окружности
3) центр вписанной в данный треугольник окружности
4) Если хорда перпендикулярна диаметру, то диаметр проходит через её середину (свойство хорды). 1 : 1
5) в этой задаче не понятно, какой такой угол ОАВ надо найти. По мне так АОВ = 180, ибо эти три точки лежат на одной прямой. О - центр окружности, АВ - диаметр.
если угол между прямыми АВ и СД надо определить, то он равен 90*, по св-ву, указанному в 4)
В знаменателе минусы уничтожаются (минус на минус дает плюс). 3x^2 - x + 3 ≠ 0 D = (-1)^2 - 4*3*3 = 1 - 36 < 0 - корней нет. 3x^2 - x + 3 > 0 при любом x. (x - 2)^2 > 0 при любом x, кроме x = 2, где (x - 2)^2 = 0 Поэтому x = 2 - это решение. Делим на всё это, а также сокращаем (x - 1). Но нужно помнить, что x = 2 - решение, а x = 1 - не решение.
Особые точки: x = -7 и x = 2/3 По методу интервалов берем любое число, например, 0
Неравенство выполнено, значит, интервал (-7; 2/3] подходит. Точка x = 1 в интервал не входит. ответ: x ∈ (-7; 2/3] U [2]
Объяснение и ответы:
1) дуга, ограниченная сторонами угла, являющаяся частью окружности с центром в вершине угла и радиусом 3 см
2) центр описанной около данного треугольника окружности
3) центр вписанной в данный треугольник окружности
4) Если хорда перпендикулярна диаметру, то диаметр проходит через её середину (свойство хорды). 1 : 1
5) в этой задаче не понятно, какой такой угол ОАВ надо найти. По мне так АОВ = 180, ибо эти три точки лежат на одной прямой. О - центр окружности, АВ - диаметр.
если угол между прямыми АВ и СД надо определить, то он равен 90*, по св-ву, указанному в 4)
В знаменателе минусы уничтожаются (минус на минус дает плюс).
3x^2 - x + 3 ≠ 0
D = (-1)^2 - 4*3*3 = 1 - 36 < 0 - корней нет.
3x^2 - x + 3 > 0 при любом x.
(x - 2)^2 > 0 при любом x, кроме x = 2, где (x - 2)^2 = 0
Поэтому x = 2 - это решение.
Делим на всё это, а также сокращаем (x - 1).
Но нужно помнить, что x = 2 - решение, а x = 1 - не решение.
Особые точки: x = -7 и x = 2/3
По методу интервалов берем любое число, например, 0
Неравенство выполнено, значит, интервал (-7; 2/3] подходит.
Точка x = 1 в интервал не входит.
ответ: x ∈ (-7; 2/3] U [2]