2. может ли в результате
получиться 02
основания степеней не должны рав
жет ли в результате деления степеней с одинаковые
.
телем,
ва степени с целым показателем.
7.1. используя свойства степ
выражение:
1) 2а 2. зач,
3) (2c-3)2;
7.2.
ставьте в виде степени с целым
2) 24a® : (6а 3);
4) 2(33b)23b.
репени с целым показателем вырасе
1) 125-5-4,
2)
- 3-4 : 32;
Дана арифметическая прогрессия -15, -12, ..., то есть a₁= -15, a₂= -12. Тогда
а) её разность:
d = a₂ - a₁ = -12 - (-15) = -12 + 15 = 3.
б) формула n-члена этой прогрессии :
a(n) = -15+3·(n-1)
в) выясним, содержится ли в этой прогрессии число 12:
a(n) = 12 или
-15+3·(n-1) = 12
3·(n-1) = 12 + 15
3·(n-1) = 27
n-1 = 27:3
n = 9+1=10∈N
Содержится под номером 10.
г) Так как d=3 >0, то в этой прогрессии бесконечное количество положительных членов. В самом деле:
a(n) = -15+3·(n-1)>0
3·(n-1)>15
n-1>15:3
n>5+1
n>6
Начиная с 7-члена арифметической прогрессии все члены положительные. Так как множество натуральных чисел N бесконечно, то положительных членов арифметической прогрессии бесконечно.
x² + 8x + 16 = 4x² + 5
x² - 4x² + 8x + 16 - 5 = 0
- 3x² + 8x + 11 = 0
3x² - 8x - 11 = 0
D = b² - 4ac = 64 - 4 × 3 × (-11) = 64 + 132 = 196 = 14²
x1 = ( 8 + 14) / 6 = 22/6 = 11/3 = 3 целых 2/3
x2= ( 8 - 14) / 6 = - 1
ответ: x1 = 3целых 2/3, x2 =- 1.
2) 36x² - 9x = 3x - 1
36x² - 9x - 3x + 1 = 0
36x² - 12x + 1 = 0
D = b² - 4ac = 144 - 4 × 36 × 1 = 144 - 144 = 0 - имеет один корень.
x = - b/2a
x = 12 / 72 = 1/6
ответ: x = 1/6.
3) 0,1x² - 14 = - 0,4x
0,1x² + 0,4x - 14 = 0 (сокращаем на 0,1):
x² + 4x - 140 = 0
D = b² - 4ac = 16 - 4 × (-140) = 16 + 560 = 576 = 24²
x1 = ( - 4 + 24) / 2 = 10
x2 = ( - 4 - 24) / 2 = - 14
ответ: x1 = 10, x2 = - 14.