2. Найдите периметр треугольника, если его стороны 3xy +7х +2y; 2xy? + 3хи -2y + 4х. ответ запишите в виде многочлена стандартного вида и укажите его степень.
Вероятность, что цель не будет поражена первым выстрелом = 1 - 0,8 = 0,2
Вероятность, что цель не будет поражена вторым выстрелом 1-0,8 = 0,2
Вероятность, что цель не будет поражена двумя выстрелами подряд: 0,2 * 0,2 = 0,04.
Таким образом, вероятность поражения цели двумя выстрелами 1-0,04 = 0,96
Б) Аналогично рассуждая, вероятность, что цель не будет поражена третьим выстрелом 1-0,8 = 0,2
Вероятность, что цель не будет поражена тремя выстрелами подряд: 0,2 * 0,2 * 0,2 = 0,008.
Таким образом, вероятность поражения цели тремя выстрелами 1-0,008 = 0,992
Таким образом, вероятность поражения цели тремя выстрелами возрастает по сравнению с вероятностью поражения цели двумя выстрелами на 0,992-0,96=0,032, т.е. примерно на 3% .
В) Вероятно, на практике систему ограничивают двумя разрешениями на выстрел, поскольку третий выстрел недостаточно существенно повышает вероятность поражения цели.
А) Вероятность поражения цели одним выстрелом 0,8
Вероятность, что цель не будет поражена первым выстрелом = 1 - 0,8 = 0,2
Вероятность, что цель не будет поражена вторым выстрелом 1-0,8 = 0,2
Вероятность, что цель не будет поражена двумя выстрелами подряд: 0,2 * 0,2 = 0,04.
Таким образом, вероятность поражения цели двумя выстрелами 1-0,04 = 0,96
Б) Аналогично рассуждая, вероятность, что цель не будет поражена третьим выстрелом 1-0,8 = 0,2
Вероятность, что цель не будет поражена тремя выстрелами подряд: 0,2 * 0,2 * 0,2 = 0,008.
Таким образом, вероятность поражения цели тремя выстрелами 1-0,008 = 0,992
Таким образом, вероятность поражения цели тремя выстрелами возрастает по сравнению с вероятностью поражения цели двумя выстрелами на 0,992-0,96=0,032, т.е. примерно на 3% .
В) Вероятно, на практике систему ограничивают двумя разрешениями на выстрел, поскольку третий выстрел недостаточно существенно повышает вероятность поражения цели.
Пусть х1 и х2 - любые действительные числа (из множества R), удовлетворяющие единственному условию х2 > х1
Тогда функция y = f(x) называется:
- убывающей на R, если при этом: f(x2) < f(x1);
- возрастающей на R, если при этом: f(x2) > f(x1).
Объяснение:
Функция возрастающая - если большему аргументу отвечает большее значение фунцкции. Пусть у нас аргументы буду
По условию
1) Если мы умножим неравенство аргументов на -1, получится, что
Поскольку мы использовали те же значения функции (при данных значениях аргумента значения функций начальных и этих будет одинаково), то
Функция будет убывающей
2)
Поэтому функция возрастающая