1. Пусть скорость течения х. Тогда скорость катера по течению 15+х, а против течения 15-х. Тогда путь по течению занял 18/(15+х), а против течения 24/(15-х) 18/(15+х) + 24/(15-х)=3 Сократим в 3 раза для легкости расчетов 6/(15+х) + 8/(15-х)=1 Приведем к одному знаменателю 6(15-х)/(15+х)(15-х) + 8(15+х)/(15-х)(15+х)=1 6(15-х) + 8(15+х)=(15-х)(15+х) 90-6х + 120+8х = 225-х² 210+2х = 225-х² х²+2х-15=0 D=2²+4*15=64 √D=8 x₁=(-2-8)/2=-5 отбрасываем отрицательное значение x₂=(-2+8)/2=3 км/ч ответ: скорость течения 3 км/ч
2. Пусть скорость течения х. Тогда скорость катера по течению 16+х, а против течения 16-х. Тогда путь по течению занял 9/(16+х), а против течения 21/(16-х) 9/(16+х) + 21/(16-х)=2 Приведем к единому знаменателю 9(16-х)/(16+х)(16-х) + 21(16+х)/(16-х)(16+х)=2 9(16-х) + 21(16+х)=2(16²-х²) 144-9х+336+21х=512-2х² 144-9х+336+21х=512-2х² 480+12х=512-2х² 2х²+12х-32=0 х²+6х-16=0 D=6²+4*16=100 √D=10 x₁=(-6-10)/2=-8 отбрасываем отрицательное значение x₂=(-6+10)/2=2 км/ч ответ: скорость течения 2 км/ч
4. Периметр треугольника ABC равен 50 см. Сторона АВ на 2 см больше стороны ВС, а сторона АС в 2 раза больше стороны ВС. Найдите стороны треугольника
пусть ВС=х, имеем АВ=х+2,а АС=2х
х+х+2+2х=50
4х=48
х=12 см-ВС
АВ=12+2=14 см
АС=2*12=24 см
и задача
Ежедневно рабочий должен был изготовлять 20 деталей, но изготовлял 30. (20+10=30). Пусть за х дней рабочий должен был выполнить задание, тогда за х-4 дня он его выполнил. По условию задачи составляем уравнение:
18/(15+х) + 24/(15-х)=3
Сократим в 3 раза для легкости расчетов
6/(15+х) + 8/(15-х)=1
Приведем к одному знаменателю
6(15-х)/(15+х)(15-х) + 8(15+х)/(15-х)(15+х)=1
6(15-х) + 8(15+х)=(15-х)(15+х)
90-6х + 120+8х = 225-х²
210+2х = 225-х²
х²+2х-15=0
D=2²+4*15=64
√D=8
x₁=(-2-8)/2=-5 отбрасываем отрицательное значение
x₂=(-2+8)/2=3 км/ч
ответ: скорость течения 3 км/ч
2. Пусть скорость течения х. Тогда скорость катера по течению 16+х, а против течения 16-х. Тогда путь по течению занял 9/(16+х), а против течения 21/(16-х)
9/(16+х) + 21/(16-х)=2
Приведем к единому знаменателю
9(16-х)/(16+х)(16-х) + 21(16+х)/(16-х)(16+х)=2
9(16-х) + 21(16+х)=2(16²-х²)
144-9х+336+21х=512-2х²
144-9х+336+21х=512-2х²
480+12х=512-2х²
2х²+12х-32=0
х²+6х-16=0
D=6²+4*16=100
√D=10
x₁=(-6-10)/2=-8 отбрасываем отрицательное значение
x₂=(-6+10)/2=2 км/ч
ответ: скорость течения 2 км/ч
а) 4а² - 12ab +9b²
б) (5x)² - (3y)² = 25x² - 9y²
в) 2a³(a² + 4ab + 4b²) = 2a^5 + 8a^4b + 8a³b²
2а-3 )²+ ( 3-2а )( 3+2а ) -3 ( а+2 )( 3а-1 )=4a²-12a +9+9-4a²-9a²-3a-18a-6= -9a² -33a+12
-50-20х-2х²= - 2(х²+10x+25)= -2 (x+5)(x+5)
1. У выражение: а) 3а2b • (-5а3b)=-15а^5b^2
б) (2х2у)3=8х^6у^3
2. Решите уравнение 3х - 5 (2х + 1) = 3 (3 - 2х)
3х-10х-5=9-6х
-7х+6х=9+5
-х=14
х=-14.
3. Разложите на множители: а) 2ху - 6y2=2у(х-6y)
б) а3 - 4а=а(а^2-4)
4. Периметр треугольника ABC равен 50 см. Сторона АВ на 2 см больше стороны ВС, а сторона АС в 2 раза больше стороны ВС. Найдите стороны треугольника
пусть ВС=х, имеем АВ=х+2,а АС=2х
х+х+2+2х=50
4х=48
х=12 см-ВС
АВ=12+2=14 см
АС=2*12=24 см
и задача
Ежедневно рабочий должен был изготовлять 20 деталей, но изготовлял 30. (20+10=30). Пусть за х дней рабочий должен был выполнить задание, тогда за х-4 дня он его выполнил. По условию задачи составляем уравнение:
30(x-4)=20x
30x-120=20x
30x-20x=120
10x=120
x=120:10
x=12
ответ: за 12 дней