Двое рабочих работая совместно могут выполнить работу за 12 дней. За сколько времени выполнит эту работу второй работник, если он за 3 дня выполняет такую часть работы,как первый за 4 дня.
Вся работа - 1;
х - производительность 1 работника (часть работы в день).
у - производительность 2 работника (часть работы в день).
По условию задачи система уравнений:
(х+у) * 12 = 1
4*х=3*у
1) Найти производительность труда 2 работника.
Выразить х через у во втором уравнении, подставить выражение в первое уравнение и вычислить у:
х= 3у/4
(3у/4 + у) * 12=1
9у + 12у = 1
21у = 1
у = 1/21 - производительность труда 2 работника (такую часть работы он делает за 1 день).
2) Найти количество дней, за которое 2 работник один сделает всю данную работу.
1 : 1/21 = 21 (день) потребуется второму работнику, если он будет работать один.
В решении.
Объяснение:
Двое рабочих работая совместно могут выполнить работу за 12 дней. За сколько времени выполнит эту работу второй работник, если он за 3 дня выполняет такую часть работы,как первый за 4 дня.
Вся работа - 1;
х - производительность 1 работника (часть работы в день).
у - производительность 2 работника (часть работы в день).
По условию задачи система уравнений:
(х+у) * 12 = 1
4*х=3*у
1) Найти производительность труда 2 работника.
Выразить х через у во втором уравнении, подставить выражение в первое уравнение и вычислить у:
х= 3у/4
(3у/4 + у) * 12=1
9у + 12у = 1
21у = 1
у = 1/21 - производительность труда 2 работника (такую часть работы он делает за 1 день).
2) Найти количество дней, за которое 2 работник один сделает всю данную работу.
1 : 1/21 = 21 (день) потребуется второму работнику, если он будет работать один.
1.Ix-2I+Ix+3I=2-x+x+3=5
2. ((2x-3)³)¹/³-2x=2x-3-2x=-3
3. (x²+y²-x²-xy)*(x/y)/(x*(x¹/²+y¹/²))=(y²-yx)/(y**(x¹/²+y¹/²))=
y*(x¹/²+y¹/²)(x¹/²-y¹/²)/(y**(x¹/²+y¹/²))=)(x¹/²-y¹/²)=√x-√y;
√0.09-√0.04=03-0.2=01;
4. 5х²+9х+64=64; 5х²+9х=0; х*(5х+9)=0; х=0; х=-1.8
сумма корней 0-1.8=-1.8
6. ОДЗ х²+3х-18>0; По Виету корни уравнения х²+3х-18=0
это х=-6 и х=3
-63
+ - +
х∈(-∞;-6)∪(3;+∞)
т.к. 4 меньше 9 при любом х из ОДЗ, то ответ х∈(-∞;-6)∪(3;+∞)
5. отнимем от первого уравнения второе . получим 6∛у=6, откуда у=1, тогда 2∛х=-7+3, ∛х=-2, х=-8
ответ (-8;1)